FB 6 Mathematik/Informatik

Institut für Mathematik


Navigation und Suche der Universität Osnabrück


Hauptinhalt

Topinformationen

SS 2015

21.04.2015 um 12:00 Uhr in Raum 69/E15

Prof. Dr. Alexander Koldobsky (University of Missouri)

Slicing Inequalitites for Measures of Convex Bodies

28.04.2015 um 12:00 Uhr in Raum 69/E15

Benjamin Reichenwallner (Universität Salzburg, z.Zt. Universität Osnabrück)

Monotonicity of Random Polytopes

05.05.2015 um 12:00 Uhr in Raum 69/E15

Denise Günther (Universität Osnabrück)

Short Rate Modelle in der LVM

06.05.2015 um 13:00 Uhr in Raum 69/E18

Nicolas Chenavier (Université de Littoral)

A general study of extremes for a stationary random tessellation with a finite range condition

12.05.2015 um 12:00 Uhr in Raum 69/E15

Nikolay Baldin M. Sc. (Humboldt Universität  zu Berlin)

Unbiased Estimation of the Volume of a Convex Body

Abstract: Based on observations of points uniformly distributed over a convex set in R^d, a new estimator for the volume of the convex set is constructed. The estimator is minimax optimal and also efficient non-asymptotically: it is nearly unbiased with minimal variance among all unbiased oracle-type estimators. Our approach is based on a Poisson point process model and as an ingredient, we prove that the convex hull is a sufficient and complete statistic. No hypotheses on the boundary of the convex set are imposed. In a numerical study, we show that the estimator outperforms earlier estimators for the volume. In addition, an improved set estimator for the convex body itself is proposed.

30.06.2015 um 12:00 Uhr in Raum 69/E15

Juniorprof. Dr. Hanna Döring (Universität Osnabrück)

07.07.2015 um 12:00 Uhr in Raum 69/E15

Benjamin Reichenwallner (Universität Salzburg, z.Zt. Universität Osnabrück)

An Extension of Rademacher's Theorems on the Monotonicity of the Volume of Random Simplices

14.07.2015 um 12:00 Uhr in Raum 69/E15

Patrick Jochmann (Universität Osnabrück)

The Convex Floating Body

04.09.2015 um 11:00 Uhr in Raum 69/117

Dr. Johannes Stemeseder (Salzburg)

Random polytopes with vertices on the boundary of a smooth convex body