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Abstract Recovery of image data from photoacoustic measurements asks for the inversion of the
spherical mean value operator. In contrast to direct inversion methods for specific geometries, we
consider a semismooth Newton scheme to solve a total variation regularized least squares problem.
During the iteration, each matrix vector multiplication is realized in an efficient way using a recently
proposed spectral discretization of the spherical mean value operator. All theoretical results are
illustrated by numerical experiments.
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1 Introduction

Analogously to the inversion of the Radon transform in computerized tomography, recovering a
function from its mean values over a family of spheres is the crucial ingredient in photoacoustic
imaging [40, 25, 6]. The recovery of a function from such spherical means has been studied recently
in [11, 3, 1, 25, 36] and references therein. In all practical applications the so called center points are
located on a fixed measurement curve or surface and for specific geometries, direct reconstruction
algorithms are discussed in [18, 29, 28, 17, 2, 10, 27, 13, 4]. Generalizations to integrating detectors
and to variable speed of sound, having no direct relation to the spherical mean value operator, are
studied in [16, 7, 33, 43, 19, 42] and [22, 39, 35], respectively.

In this paper we consider constant speed of sound and center points located on an arbitrary curve
or surface. For this situation, the reconstruction problem is known to be ill-posed, see e.g. [25, 32] for
a detailed discussion, and it has been pointed out recently that direct reconstruction formulae are out
of reach, cf. [30, 15, 14]. We regularize the original problem by a total variation (TV) term with the
aim of preserving significant edges in the reconstructed images [37]. We set up an iterative method to
solve the total variation regularized least squares problem based on the Fenchel-Rockafellar-duality
and inexact semismooth Newton techniques following the approach in [21]. In each iteration, we
apply the recently proposed algorithm [12] for the fast and accurate computation of spherical means.

Yiqiu Dong
Technical University of Denmark, Department of Applied Mathematics and Computer Science, yido@dtu.dk

Torsten Görner
University Osnabrück, Institute of Mathematics, torsten.goerner@uos.de

Stefan Kunis
University Osnabrück, Institute of Mathematics, and Helmholtz Zentrum München, stefan.kunis@math.uos.de



2 Yiqiu Dong et al.

The structure of our paper is as follows. Section 2 reviews the Cauchy problem for the wave
equation and its relation to the spherical mean value operator. After discretization of this operator
via trigonometric polynomials, we discuss the algorithmic properties of this discrete spherical mean
value operator. The following section sets up the total variation regularized least squares problem
(P0) and studies a tight relaxation for which the semismooth Newton method [34, 20] is applied.
Several numerical experiments are reported in Section 4 and we conclude our findings in the last
section.

2 Photoacoustic imaging, spherical means, and discretization

In many topics of photoacoustic imaging we have to deal with the Cauchy problem for the wave
equation

∂2t p(x, t)− ν2s (x)∆p(x, t) = 0 for (x, t) ∈ Rd × (0,∞),

p(x, 0) = f(x) for x ∈ Rd, (1)

∂tp(x, 0) = 0 for x ∈ Rd,

where d ∈ N, d ≥ 2, is the spatial dimension, p is the pressure and νs is the speed of sound within
the medium. In general, the speed of sound depends on the spatial variable x, but we assume for
simplicity homogeneity and after rescaling suppose νs = 1. Otherwise, photoacoustic imaging has
no direct relation to the spherical mean value operator and other methods [22, 39, 35] have been
considered. It is well-known that for a sufficiently smooth function f : Rd → R the solution of (1)
can be given as

p(x, t) =
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for odd d,

see [9, §VI.13, eq. 13-15], where the spherical mean value operator M is defined by

Mf(x, r) :=
1

ωd−1

∫
Sd−1

f(x+ rξ)dσ(ξ), (x, r) ∈ Rd × (0,∞).

Here, Sd := {x ∈ Rd : |x|22 :=
∑d
j=1 x

2
j = 1} denotes the d − 1 dimensional sphere, σ denotes the

surface measure on Sd−1 and ωd−1 := σ(Sd−1).
The goal is to recover f from measurements p(y, t), (y, t) ∈ Ω×R, where Ω ⊂ Rd is some manifold

surrounding the region of interest. In particular for spatial dimension d = 3, we have to find f(x),
x ∈ R3, from the data

p(y, t) =
∂

∂t
(t (Mf) (y, t)) , y ∈ Ω ⊂ R3, t ∈ R.

In this paper, we limit our considerations to recover a function from its spherical means with
iterative methods. For this purpose, the efficient and accurate computation of spherical means from
given function values on some grid is essential. We follow our recent approach in [12], consider
functions supported in a subset of [−1

2 ,
1
2 ]d =: Td and approximate these by trigonometric poly-

nomials. Moreover, we assume that the manifold Ω ⊂ Td and the support of the function fulfill
sup{|y − x|2 : y ∈ Ω,x ∈ suppf} ≤ 1, and we thus can restrict the radii to r ≤ 1. The spherical
mean value operator is bounded from Lp(Td) to Lp(Td × [0, 1], dyrd−1 dr) and for a fixed radius r,
the complex exponential functions ek : Rd → C, ek(x) := e2πikx, k ∈ Zd, are eigenfunctions in the
sense

Mek(y, r) = ek(y)
Γ
(
d
2

)
J d−2
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2

,
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where Jν denotes the Bessel function of first kind with order ν. For some discretization parameter
n ∈ N, the function f : Td → R is typically given by discrete values f(x) on a regular grid x ∈ X ⊂ Td,

X :=
{(

2j1+1−n
2n , . . . , 2jd+1−n

2n

)>
: j ∈ {0, . . . , n− 1}d

}
,

and the spherical means Mf(y, r) have to be computed for scattered center points y ∈ Y ⊂ Ω and
radii r ∈ R ⊂ [0, 1], where M1,M2 ∈ N denote the cardinalities of these sets. To this end, we compute
discrete Fourier coefficients

f̂k :=
1

nd

∑
x∈X

f(x)e−2πikx, k ∈ Jn :=
[
−n

2
,
n

2

)d
∩ Zd,

by one ordinary fast Fourier transform (FFT) in the first step. Subsequently, we compute for each
radius r ∈ R auxiliary coefficients

h̃k,r := f̂k
Γ
(
d
2

)
J d−2

2
(2π|k|2r)

(π|k|2r)
d−2
2

, k ∈ Jn,

and evaluate

Mf(y, r) ≈ g(y, r) :=
∑
k∈Jn

h̃k,re
2πiky, y ∈ Y,

by nonequispaced FFTs. In matrix vector notation, this sums up to

g = Mf ,

with a discrete spherical mean value operator M : RN → CM , N := nd, M := M1M2,

M :=


AD1F

AD2F
...

ADM2
F

 ,

with the following nonequispaced Fourier matrix A ∈ CM1×N , diagonal matrices Dj ∈ RN×N ,
j = 1, . . . ,M2, and a Fourier matrix F ∈ CN×N ,

(A)y,k := e2πiky, y ∈ Y,k ∈ Jn,

(Dj)k,k :=
Γ
(
d
2

)
J d−2

2
(2π|k|2rj)

(π|k|2rj)
d−2
2

, k ∈ Jn,

(F )k,x := e−2πikx, k ∈ Jn,x ∈ X.

An immediate consequence is given by

Lemma 1 With the above definitions, we have

M∗M = F ∗

M2∑
j=1

DjTDj

F
with the Hermitian multilevel Toeplitz matrix T ∈ CN×N ,

(T )k,l :=
∑
y∈Y

e2πi(k−l)y.
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Proof We rewrite the above definition as

M =

A . . .

A


 D1

...
DM2

F
and use

(A∗A)k,l =
∑
y∈Y

e2πi(k−l)y

Due to Lemma 1, we conclude the following sufficient conditions on the regularity of the matrix
M∗M . If the radii rj , j = 1, . . . ,M2, are chosen in such a way that the diagonal matrices Dj

are regular and the center points y ∈ Y are in general position for the multivariate trigonometric
interpolation problem of degree n, then M∗M is strictly positive definite. In particular, it suffices
to choose an arbitrary curve or manifold Ω ⊂ Td, such that no nonzero trigonometric polynomial
of degree n vanishes, and sample center points Y ⊂ Ω dense enough. However note that this asks
for at least nd center points which is an order of magnitude to large and this will not overcome the
ill-conditioning of the discrete problem. Subsequently, we assume that M∗M is invertible.

As detailed in [12], the above approach leads to an algorithm of complexity O(M2(N logN+M1))
in general using the nonequispaced FFT [24]. For the two-dimensional case, i.e. n× n images, M1 =
M2 = O(n) detectors and radii, this leads to a semi-fast method of complexity O(n3 log n). In case
d = 3, i.e. n× n× n volumes, M1 = O(n2) detectors and M2 = O(n) radii, the FFT-based algorithm
can be improved by the recently proposed butterfly sparse FFT [41, 26] and leads to an algorithm
of complexity O(n3 log n).

We note in passing that the considered trigonometric interpolation is complex valued also for real
valued functions, but can easily be made real valued by extending the discrete Fourier coefficients
f̂k to {−n2 , . . . ,

n
2 }
d ⊃ Jn appropriately. Subsequently, we consider this real valued discrete spherical

mean value operator in the two-dimensional case for ease of notation.

3 TV-based iterative method

We now turn to the reconstruction problem

Mf = g, (2)

where g ∈ RM is the vector of discrete spherical mean values, f ∈ RN is a real valued image obtained
from a two-dimensional n-by-n pixel-array on a regular grid by concatenation in the usual columnwise
fashion with N = n2, and M ∈ RM×N is the discrete spherical mean value operator. We assume that
M∗M is invertible and will add a small multiple of the identity matrix if this is not the case. The
problem of reconstructing the image f from the measurements g is known to be ill-posed. Hence,
regularization techniques based on a prior information on f are utilized to get a stable reconstruction
process. The total variation (TV) seminorm, having great success in image restoration [37], is defined
by

‖v‖TV :=
N∑
j=1

|[∇v]j |2 =
N∑
j=1

√
|(∇xv)j |2 + |(∇yv)j |2.

Here, we use the abbreviation [p]j = (pj , pN+j)
>, p ∈ R2N , j = 1, . . . , N , and define the discrete

gradient operator ∇ ∈ R2N×N by [∇v]j := ((∇xv)j , (∇yv)j)
> with the forward differences and

symmetric boundary conditions in the respective coordinate directions, i.e.,

(∇xv)j :=

{
vs+1,t − vs,t, if s < n,

0, if s = n,
(∇yv)j :=

{
vs,t+1 − vs,t, if t < n,

0, if t = n,
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where j = sn + t with (s, t) ∈ {1, 2, · · · , n} × {1, 2, · · · , n} is an index in the regular pixel-array.
Combining the TV regularization with an l2-data-fitting term, we reconstruct the image f by solving
the minimization problem

min
f∈RN

J (f), J (f) :=
1

2
‖Mf − g‖22 + α‖f‖TV, (P0)

where α > 0 is the regularization parameter to control the trade-off between a good fitness to the
data g and the smoothness from the TV term.

The TV term is nondifferentiable and this is responsible for preserving edges in images but
also poses an algorithmic challenge. Such a nondifferentiability conforms with the nonuniqueness to
solutions of its Fenchel-Rockafellar-dual, see [21] for more details. In order to overcome the difficulty,
referring to [21, 31] we propose a dual regularization in the Fenchel-Rockafellar-dual of (P0), (P ∗),
and correspondingly obtain a local smoothness of the nondifferentiable TV term, i.e.,

sup
p∈R2N

− 1

2
‖M∗g − divp‖2M +

1

2
‖g‖22 −

γ

2α

N∑
j=1

|[p]j |22,

subject to (s.t.) |[p]j |2 ≤ α for j = 1, . . . , N, (P ∗)

min
f∈RN

1

2
‖Mf − g‖22 +

N∑
j=1

(Φγ(∇f))j , (P )

where p ∈ R2N is the dual variable, we have ‖v‖2M := 〈(M∗M)−1v,v〉 =
∑N
j=1 vj · ((M

∗M)−1v)j ,
the divergence operator is given by div = −∇∗, γ > 0 is the dual regularization parameter, and
Φγ : R2N → RN is defined by

(Φγ(∇f))j :=


α
2γ

∣∣∣[∇f ]j

∣∣∣2
2
, if

∣∣∣[∇f ]j

∣∣∣
2
< γ,

α
(∣∣∣[∇f ]j

∣∣∣
2
− γ

2

)
, if

∣∣∣[∇f ]j

∣∣∣
2
≥ γ.

Here, Φγ is a Huber function [23], which smooths locally the TV term in order to obtain the dif-
ferentiability of (P0) and the uniqueness of the dual solution p. In Φγ , the parameter γ controls
the trade-off between quadratic regularization and the TV regularization. Roughly speaking, large
γ leads to smoothing of edges and benefits the numerical computation. On the other hand, small γ
leads to good edge preservation due to the non-differentiability of the TV regularization. In addition,
referring to Theorem 2.2 in [21], we have the following result.

Theorem 1 Suppose f̄γ is the solution of (P ) and f̄ is the solution of (P0). Then, as γ → 0, f̄γ
converges to f̄ .

Based on the first order optimality condition, the solutions f̄γ and p̄γ of (P ) and (P ∗), respec-
tively, satisfy

M∗Mf̄γ + divp̄γ =M∗g, (3)

max{γ, |[∇f̄γ ]j |2}[p̄γ ]j =− α[∇f̄γ ]j , for j = 1, . . . , N.

Due to the presence of the max-operator, the system is not smooth but semismooth. We solve it by
the semismooth Newton technique, see [34, 20], and each semismooth Newton step is given by

f l+1 := f l + δf with Hlδf = wl (4)

pl+1 := pl + δp = −D(mγl)−1
[
α∇f l+1 + χAlD(pl)N(∇f l)∇δf

]
(5)

with

Hl := M∗M +∇∗D(mγl)−1
[
αIN + χAlD(pl)N(∇f l)

]
∇,
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wl := −M∗(Mf l − g)− α∇∗D(mγl)−1∇f l.

Here, IN ∈ RN×N is the identity matrix, D(mγl) ∈ R2N×2N is a diagonal matrix with the vector

mγl ∈ R2N , (mγl)j = (mγl)N+j = max{γ, |[∇f l]j |2}, as the main diagonal. Moreover, we define the

set Al = {j : |[∇f l]j |2 > γ} and the thresholding operator as diagonal matrix χA ∈ R2N×2N ,

(χA)j,j := (χA)N+j,N+j :=

{
1, if j ∈ A,
0, if j ∈ Ac.

In addition, with v = (v>1 ,v
>
2 )> ∈ R2N , we set

N(v) :=

[
D(v1) D(v2)
D(v1) D(v2)

]
∈ R2N×2N .

In general, the matrix Hl is not symmetric, but at a solution it is symmetric positive definite due
to the assumption of the invertibility of M∗M . We solve the linear equation in (4) by the biconjugate
gradient stabilized (BICGSTAB) algorithm [38]. Similarly to the method [21], the whole algorithm
can be shown to converge at a superlinear rate provided that the initial pair (f0,p0) is sufficiently
close to the solution.

4 Numerical experiments

In this section, we provide numerical results to study the behavior of our method with respect to
its image reconstruction capability and its computational efficiency. In our numerics, when solving
the primal-dual system (3), unless otherwise specified we set γ = 10−3, and we stop the semismooth
Newton iteration as soon as the initial residual is reduced by a factor of 10−3 or after performing 10
semismooth Newton steps. In each semismooth Newton step, the BICGSTAB iteration is stopped
as soon as the relative norm of the residual of the primal-dual system (3) at (f l,pl) drops below

toll+1 :=
1

103
·min

{(
‖rl‖2
‖r0‖2

) 3
2

,
‖rl‖2
‖r0‖2

}
, rl :=

(
M∗Mf l + divpl −M∗g(

max{γ, |[∇f l]j |2}[pl]j + α[∇f l]j
)
j=1,...,N

)
.

In order to ensure the invertibility of M∗M , as mentioned in the beginning of Section 3, we add a
small multiple of the identity matrix and use M∗M+κlIN instead. Here, the κ-sequence is generated
by κl+1 = 10−2toll approaching zero as l increases. Furthermore, for the comparison of computational
efficiency, all simulations were performed in MATLAB R2013a on a computer equipped with a Intel
Xeon E7450 CPU with 2.4 GHz and 94 GByte main memory. The quality of the reconstructions
are shown quantitatively by using the peak signal-to-noise ratio (PSNR) [5], which is a widely used
image quality assessment measure.

Example 1. In this example, we give the reconstructed results from the spherical mean values
of the phantoms shown in Figure 1 (left) by solving the TV regularization model (P0). Here, the
phantoms are assumed to be supported in the disk with the radius less than 0.5, and there are
M1 = 80 detectors (shown as black dots in Figure 1 (left)) uniformly distributed on the surrounding
circle. Since in this case the spherical mean values vanish for r > 1, the given data g, shown in
Figure 1 (right), include the spherical mean values with 0 ≤ r ≤ 1, which are discretized at M2 = 256
linearly equally spaced points. Hence, in this example we have M = 20480. In addition, the image
resolution of the phantoms are 256-by-256, i.e. N = n2 = 216. In the first row of Figure 2, we show
the least squares solutions of (2) by solving minf

1
2‖Mf − g‖22, which is utilized as the initial value

in our method for solving the TV-model.
When solving (P0) by its locally-smoothed approximation shown in (P ), the regularization pa-

rameter is set to α = 10−5. For the Smiley Face, the semismooth Newton iteration was stopped
after 10 iterations with the CPU time 7 hours. And for the Shepp Logan Phantom, the stopping
rule of the semismooth Newton iteration was reached after l = 6 iterations with the CPU time 13
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Fig. 1: The phantoms Smiley and Shepp Logan on the left and the data g ∈ RM1×M2 on the right.

Table 1: For each iteration l, we show the residual ‖rl‖2 of (3), the objective function value J (f) of (P0), and
the number of the BICGSTAB iterations linner.

Smiley Face Shepp Logan Phantom

l ‖rl‖2 J (f l) linner ‖rl‖2 J (f l) linner
0 6.14e-1 5.9413 - 1.17e-1 0.2553 -
1 6.67e-3 0.1333 50 2.09e-3 0.0322 50
2 2.52e-3 0.0741 48 6.17e-4 0.0218 50
3 2.93e-3 0.0676 14 4.34e-4 0.0179 50
4 2.53e-3 0.0650 10 2.75e-4 0.0162 50
5 2.57e-3 0.0630 9 1.87e-4 0.0152 50
6 2.34e-3 0.0622 6 1.07e-4 0.0147 50
7 2.58e-3 0.0614 6 – – –
8 2.18e-3 0.0608 6 – – –
9 2.49e-3 0.0589 9 – – –
10 1.83e-3 0.0584 6 – – –

hours. Figure 2 (second and third row) shows the reconstructed images after the first and the last
iterations. Comparing the final results with the least squares solutions in Figure 2 (first row), we
observe that the method based on the TV-model improves the reconstructions visually and quanti-
tatively. Furthermore, to illustrate the convergence behavior of our method for solving (3), in Table
1 we list the residuals of the system (3), the objective function values of (P ), and the number of
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Fig. 2: Reconstructions of the Smiley (left) and the Shepp Logan phantom (right). From top to bottom: The least
squares solutions of (2) and the results in the semismooth Newton iterations during solving the TV-model, first
and last iteration. The PSNR values are 22.95 dB, 28.73 dB and 33.41 dB on the left and 19.47 dB, 23.04 dB and
34.49 dB on the right.
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the BICGSTAB iterations in each semismooth Newton step. The decrease of the residual implies a
locally superlinear convergence of the iterations.

The parameter γ in the Huber function Φγ in (P ) controls the balance between the quadratic
regularization and the TV regularization. By comparing the PSNR values and additional visual
inspection in numerical experiments, we observed that small γ provides sharper edges in the recon-
structed result due to the TV regularization, and large γ oversmooths the edges due to the quadratic
regularization. Furthermore, large γ accelerates the numerical computation. In addition, based on
Theorem 1, the solution of (P ) converges to the one of (P0) as γ tends to zero. While decreasing γ

during the iterations only mildly improves the result and does not speed up the computations in the
numerical experiments, we keep a fixed parameter γ = 10−3 in the following examples.

Example 2. In order to show the computational efficiency, we compare our primal-dual method
combined with the semismooth Newton technique with another accelerated first-order primal-dual
method proposed in [8], which is also able to solve the locally-smoothed TV-model in (P ). To compare
the computational efficiency, Figure 3 (left) shows the plots of the objective function values of (P )
versus iterations with the same α = 10−5 and γ = 10−3. For our method, except the total 10
Newton iterations, the inner iterations for solving the linear equation in (4) are also counted, i.e.,
the difference of the number of iterations between two Newton steps equals to the number of the
inner iterations of the BICGSTAB algorithm, see Table 1. In this example, we stop the first-order
primal-dual method proposed in [8] after 1000 iterations having spent 23 hours CPU time. The final
function value is still larger than that from our method after 10 semismooth Newton iterations and
a CPU time of 9 hours. We conclude that our method is more efficient in this situation. In addition,
we also give the reconstructed images obtained by both methods. Since the first-order primal-dual
method (middle) in [8] and our method (right) both aim at minimizing the locally-smoothed TV-
model (P ), they obtain similar results. But comparing the reconstructions of smiley phantom, we can
see that some corners are smoothed in the result from the method in [8], and our method performs
a more exact reconstruction. This difference is due to the accuracy of the calculations. If we increase
the number of the iterations in the method from [8], a similar reconstruction quality can be reached
by spending more CPU-time.

Fig. 3: The objective function values of (P ) versus inner iterations for the primal-dual method [8] (PSNR = 28.34
dB) and our method (PSNR = 33.41 dB).

Example 3. Now, we test our method for reconstructing from data corrupted by white Gaussian
noise with different noise levels, see Figure 4. The results obtained by solving the least squares
problem minf ‖Mf − g‖22 and our method for solving the TV-model (P0) are shown in Figure 5.
Since the parameter α controls the trade-off between a good fit to g and a smoothness requirement
due to the TV regularization, we list two results with different values of α for each noise level. It is
seen that with larger α, the reconstructed images are smoother, and more noise is removed; however,
with smaller α the results include more details, but at the same time some noise is left; see, e.g., the
right eye and the cheek of the phantom. This also suggests that small α is used for low noise level
in order to preserve details with little smoothing, and large α is used for high noise level in order to
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remove most noise. In addition, since the TV regularization is utilized in our method, it leads to the
well known staircasing effect; see, e.g., the cheek of the phantom.

Fig. 4: The data g with white Gaussian noise, left: 5% noise, PSNR = 26.09 dB; right: 10% noise, PSNR = 20.07
dB.

Table 2: For different noise levels and α, the number of semismooth Newton iterations lall, the total number of
the BICGSTAB iterations lallinner, and the CPU time t.

noise 5% 10%
α 0.01 0.006 0.02 0.01

lall 10 10 10 10
lallinner 447 441 355 457
t 23 h 21 h 16 h 20 h

In Table 2 we list the number of the semismooth Newton iterations, the total number of the
BICGSTAB iterations, and the CPU time. Although in all our tests the numbers of semismooth
Newton steps reach the maximum of 10 iterations, the reconstructed results are already acceptable.
Based on our numerical experiments, allowing more iterations yields no significant effect on the
results.

Example 4. Since in many practical cases the detectors are only able to be located on a limited
region, in this last example we consider detectors uniformly distributed on a J-shape as depicted
in Figure 6. Here a so-called visibility condition is violated and thus the reconstruction problem is
severely ill-posed, see e.g. [25] for a detailed discussion. We show the data g and the reconstructed
image by our algorithm based on the TV-model with α = 10−4. We note that in this limited view
case solving the TV-model by our primal-dual method still gives a good reconstruction with a PSNR
= 33.67 dB but of course also shows some blurring artifacts e.g. at the right corner of the mouth.

5 Summary

We introduced a novel iterative reconstruction method in photoacoustic imaging which does not
rely on a specific geometry of the detectors. Based on a dedicated discretization of the spherical
mean value operator and a total variation regularizer, our method performs reasonable efficiently
and preserves important features like edges in the reconstruction.
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(a) PSNR = 21.42 dB (b) PSNR = 18.41 dB

(c) α = 0.01, PSNR = 24.15 dB (d) α = 0.02, PSNR = 23.28 dB

(e) α = 0.006, PSNR = 25.51 dB (f) α = 0.01, PSNR = 24.72 dB

Fig. 5: The reconstructed results by solving the least squares problem and our TV-model with different parameter
values and data noise levels, 1st column: 5% noise; 2nd column: 10% noise.
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Fig. 6: From left to right: The phantom and detector positions, the data g, and the result by solving (P0).
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