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1. Introduction. Analogously to the inversion of the Radon transform in com-
puterized tomography, recovering a function from its mean values over a family
of spheres is relevant in photoacoustic tomography. The spherical mean operator
R : C(Rd)→ C(Rd × [0,∞)) is defined by

Rf(ξ, t) =

∫
Sd−1

f(ξ + tu) dσ(u), (1.1)

where Sd−1 =
{
u ∈ Rd : |u| = 1

}
denotes the unit sphere and σ its surface measure

with σ(S1) = 2π and σ(S2) = 4π. The variable t ≥ 0 is called measurement time and
the variable ξ ∈ Rd detector position or center point. In all practical applications
these center points are located on a curve or surface and we consider the classical case
ξ ∈ Sd−1 here. Moreover, we restrict ourselves to functions f : Rd → R with support
suppf ⊂ B, where B =

{
x ∈ Rd : |x| < 1

}
denotes the open unit ball, such that the

spherical mean values Rf(ξ, t) vanish for t ≥ 2.
Recovering the function f from the spherical means amounts to an inversion of the

operator (1.1). Exact inversion formulae for f were presented in [5, 4, 16, 10, 1, 9]. The
focus of the present paper lies on the discretization of approximate inversion methods
which were presented in [3, 1], where the function f can be approximated from the
spherical mean values Rf(ξ, t), ξ ∈ Sd−1, t ∈ [0, 2], using specific summability kernels.
These summability kernels are families of integrable functions Kε : B×B→ R, where
ε ∈ (0, 1) is a regularization parameter, with the properties

Kε(x, y) =

∫
Sd−1

kε(x, ξ, |y − ξ|) dσ(ξ),

f(x) = lim
ε→0

∫
B
f(y)Kε(x, y) dy,

and kε : B × Sd−1 × [0, 2] → R denotes some auxiliary function. Then a simple
calculation shows, see [1, eq. (3)],

f(x) = lim
ε→0

∫ 2

0

∫
Sd−1

kε(x, ξ, t)Rf(ξ, t) dσ(ξ) td−1 dt.

Our main objective now is an effective discretization of this reconstruction formula for
space dimensions d = 2 and d = 3. Towards this goal, we integrate over the sphere first
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and understand this step as a convolution for which Fourier techniques are applicable.
This is followed by the integration over time and finally, an interpolation step on the
reconstruction is performed.

Similar approaches can be found in [11, 8, 14] and references therein. The papers
[11, 8] consider approximate reconstruction formulas in d = 3 and d = 2, respectively.
The developed algorithm has three major steps: a filtering step that integrates the
data Rf(ξ, t) over time t against a kernel that depends only on the radial coordinate
of the reconstruction position, a linear interpolation step on the intermediate data,
and a subsequent backprojection step integrating over the sphere. Besides technical-
ities, this algorithm is efficient since the interpolation step basically decouples radial
and angular coordinates. In contrast, our algorithm discretizes physical space on a
polar or spherical grid, computes the inner integral of the reconstruction formula ef-
ficiently, and interpolates only the final result. In dimension d = 2 our algorithm
has a complexity of O

(
n3/2 log n

)
and is therefore slightly slower than conventional

implementations of filtered backprojection which has a complexity of O
(
n3/2

)
, see

e.g. [4]. In the case d = 3 our algorithm needs O
(
n4/3

)
floating point operations

and thus is faster than the implementation of filtered backprojection with O
(
n5/3

)
floating point operations [11]. Here n denotes the total problem size.

The algorithms in [14] implement exact reconstruction formulas by spectral meth-
ods which separate the radial and angular variables. After careful discretization and
truncation of involved series, these schemes achieve, up to logarithmic factors, linear
arithmetic complexity. The algorithms have four major steps: Fourier transforms with
respect to time and also with respect to the angular component, a multiplication step,
inverse Fourier transforms with respect to the angular component, an interpolation
step from the polar or spherical grid to a Cartesian grid, and a final Fourier trans-
form on the Cartesian grid. In contrast, we implement an approximate reconstruction
formula and discretize on a polar or spherical in the original domain rather than in
the frequency domain. Unfortunately, we do not achieve the almost linear orders in
arithmetic complexity, but as pointed out above our algorithms avoids interpolation
of intermediate data.

The paper is organized as follows: We consider the two- and the three-dimensional
case in Sections 2 and 3, respectively. After introducing the necessary notation, we
first present the continuous version of the reconstruction formulas when considered in
polar or spherical coordinates. Subsequently, we discretize these formulas on a polar
or spherical grid, choose involved parameters and analyze the arithmetic complexity of
the obtained algorithms. All theoretical results are illustrated by a couple of numerical
experiments in Section 4 and we finally conclude our findings in Section 5.

2. Circular means. For the two-dimensional case d = 2, we consider detector
positions on the unit circle , i.e. ξ ∈ S1, surrounding the support of the function f .
For each detector position and measurement time t ∈ [0, 2], the spherical mean is just
the integral of f over a circular arc with midpoint ξ and radius t, see also Figure
2.1(left). An appropriate choice of the function kε now is

h : R→ R, h(t) =
1

2π

1− t2

(1 + t2)2
,

hε : [−2, 2]→ R, hε(t) =
1

ε2
h(
t

ε
),

kε : B× S1 × [0, 2]→ R, kε(x, ξ, t) =
2

π
(1− |x|2)hε(|x− ξ|2 − t2).
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The result that this indeed produces a summability kernel is given in [1, Corollary 2,
Section (3.2)]. As a consequence we get an approximation to the function f by

fε(x) =
2

π
(1− |x|2)

∫ 2

0

∫
S1
hε(|x− ξ|2 − t2)Rf(ξ, t) dσ(ξ) t dt. (2.1)

We show that this reconstruction can be understood as a convolution when we use
polar coordinates for the function f . Discretization leads to a polar grid as depicted
in Figure 2.1(middle) and a bilinear interpolation on each polar wedge, cf. Figure
2.1(right) finally gives the reconstruction of f on a Cartesian grid.
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Fig. 2.1: Measurement and reconstruction geometry.

Using the standard parameterization ξ = (cosψ, sinψ)>, ψ ∈ [0, 2π), of the circle
S1 and expressing x ∈ B in polar coordinates x = r(cosϕ, sinϕ)>, r ∈ [0, 1), ϕ ∈
[0, 2π), yields

|x− ξ|2 = 1 + r2 − 2r cos(ψ − ϕ).

For notational convenience, we denote fixed arguments of functions as superscript and
skipping the parameter ε completely, i.e.,

hr,t(ψ) = hε(1 + r2 − 2r cosψ − t2),

gt(ψ) = t · Rf (cosψ, sinψ, t) ,

Hence, the approximation (2.1) can be written as a periodic convolution with respect
to the angular component

fr,t(ϕ) =
(
hr,t ∗ gt

)
(ϕ) =

∫ 2π

0

hr,t(ϕ− ψ)gt(ψ) dψ,

fε (r cosϕ, r sinϕ) =
2

π
(1− r2)

∫ 2

0

fr,t(ϕ) dt.

Typically, the measurement times t ∈ [0, 2] are equidistant and the detector posi-
tions are equiangular ξn = (cosψn, sinψn)> ∈ S1,

tm =
2m

M
, m = 0, . . . ,M − 1,

ψn =
2πn

N
, n = 0, . . . , N − 1.
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Thus, the integrals in (2.1) are discretized via composite quadrature rules with equidis-
tant nodes. In the angular variable, constant weights give the highest trigonometric
degree of exactness, in the time variable, constant weights yield a midpoint rule. We
discretize the spatial variable x accordingly on a polar grid x`,j = rj(cosϕ`, sinϕ`)

>,

rj =
j

J
, j = 0, . . . , J − 1,

ϕ` =
2π`

N
, ` = 0, . . . , N − 1,

which leads for fixed ε ∈ (0, 1) to the discrete reconstruction formula

fε(x`,j) ≈ f j` :=
8(1− |x`,j |2)

MN

M−1∑
m=0

f j,m` (2.2)

f j,m` :=

N−1∑
n=0

hε(1 + r2
j − t2m − 2rj cosψn−`) tm · Rf(ξn, tm)

For fixed indices j,m, the second sum is a multiplication with a circulant matrix, i.e.,
f j,m = Hj,mgm, where

f j,m := (f j,m` )`=0,...,N−1 ∈ RN ,
gm := (tm · Rf(ξn, tm))n=0,...,N−1 ∈ RN ,

Hj,m := (hε(1 + r2
j − t2m − 2rj cosψn−`))`,n=0,...,N−1 ∈ RN×N .

We diagonalize Hj,m = 1
NF ∗ diag ĥ

j,m
F by a discrete Fourier transform, where

F := (e−2πikn/N )k,n=0,...,N−1,

ĥ
j,m

:= Fhj,m,

hj,m := (hε(1 + r2
j − t2m − 2rj cosψn))n=0,...,N−1.

We bring the inverse Fourier transform in front of the outer summation in (2.2) and
have the following Algorithm 1.

Remark 2.1. Finally, the function f needs to be evaluated on a Cartesian grid
and since the reconstruction yields function values on the polar grid, we employ the
following interpolation scheme, see also Figure 2.1(middle). Let the discretization
parameter L ∈ N and nodes zs,t = (s/L, t/L), s, t = −L, . . . , L, be given. For ease
of notation, consider some fixed node zs,t in the positive quadrant with ‖zs,t‖2 < 1,
define indices and weights

j =

⌊
J
√
s2 + t2

L

⌋
, ws,t,j = J

(√
s2 + t2

L
− rj

)
,

` =

⌊
N

2π
arctan

t

s

⌋
, vs,t,` =

N

2π

(
arctan

t

s
− ϕ`

)
,

and interpolate bilinearly in the polar grid by

f̃ε(zs,t) = (1− ws,t,j) (1− vs,t,`) f jl + ws,t,j (1− vs,t,`) f j+1
l (2.3)
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+ (1− ws,t,j) vs,t,`f jl+1 + ws,t,jvs,t,`f
j+1
l+1 .

Figure 2.1(right) illustrates part of the polar grid and one evaluation node zs,t in its
polar wedge. Alternatively, one might use a nearest neighbor interpolation in the polar
grid or a constant or linear interpolation over some triangulation of the polar grid.

Algorithm 1

Input : discretization parameter N,M, J ∈ N,
measurement times tm = 2m

M , m = 0, . . . ,M − 1,
detector positions ξn = (cosψn, sinψn), ψn = 2πn

N , n = 0, . . . , N − 1,
data Rf(ξn, tm), n = 0, . . . , N − 1, m = 0, . . . ,M − 1,

radii rj = j
J , j = 0, . . . , J − 1,

angles ϕ` = 2π`
N , ` = 0, . . . , N − 1.

Output : values f jl ≈ fε(rj cosϕ`, rj sinϕ`), ` = 0, . . . , N − 1, j = 0, . . . , J .

for j = 0, . . . , J − 1 do
for m = 0, . . . ,M − 1 do

set gm = (tm · Rf(ξn, tm))n=0,...,N−1

compute f̂
j,m

= diag(ĥ
j,m

)Fgm

end for

compute f̂
j

=
8(1−r2j )

MN2

∑M−1
m=0 f̂

j,m

compute f j = F ∗f̂
j

end for

2.1. Parameter choice and computational complexity. An important ques-
tion concerns the choice of the parameter ε, see also [8, Section 5.1]. While the approx-
imation (2.1) becomes better for smaller ε, the discretization of the outer integral by
a composite midpoint rule produces reasonable results only if the integrand is smooth
with respect to the mesh size M−1 in (2.2). Since the function hε has its main lobe
in the interval [−ε, ε] and a constant number C ≥ 1 of samples should lie inside this
interval, we set

ε =
C

M
,

which can further decreased by an artificial increase of the resolution of the measure-
ments, e.g., by interpolation.

The inner sum in (2.2) is a discrete and cyclic convolution and can be realized
by means of fast Fourier transforms in O(N logN) floating point operations. Tak-
ing into account the outer summation over time in (2.2) for all radii, this leads to
O(JMN logN) floating point operations. Interpolation of the result in (2.3) is a lo-
cal operation and takes only O(JN +L2) floating point operations. Assuming finally
O(J) = O(L) = O(M) = O(N) and considering the total problem size n = N2,
our algorithm has complexity O(n1.5 log n). We note in passing, that the polar grid
discretization might be coarsened near the origin saving a fraction of the total com-
putations and that a generalization to nonequally spaced detectors on the unit circle
is straightforward using the nonequispaced FFT [13].
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3. Spherical means. For the three-dimensional case d = 3, we consider detector
positions on the unit sphere, i.e. ξ ∈ S2, surrounding the support of the function f ,
see Figure 3.1(left). For each detector position and measurement time t ∈ [0, 2], the
spherical mean is just the integral of f over a spherical cap with midpoint ξ and radius
t, see also Figure 3.1(right).

Fig. 3.1: Measurement geometry. Aquisition surface and detector positions (left),
spherical shells over which the function is integrated for a single detector (right).

Now the results in [1, Theorem 4, Section (4.2)] give rise to a whole family of

reconstruction formulas. Let q ∈ N, q ≥ 2, be given and define cq =
4Γ(q+ 5

2 )√
πΓ(q+1)

. Let

(t)+ = max {t, 0},

hq : R→ R, hq(t) = cq

[(
1− t2

)q
+
− 2qt2

(
1− t2

)q−1

+

]
,

hε,q : [−2, 2]→ R, hε,q(t) =
1

ε3
hq(

t

ε
), (3.1)

kε,q : B× S2 × [0, 2]→ R, kε,q(x, ξ, t) =
(1− |x|2)

2π2
hε,q(|x− ξ|2 − t2).

The conditions of [1, Theorem 4] are satisfied since the function hq is even, locally
integrable, hq(t) = cq

d
dt t(1− t

2)q+, and the function Hq : R3 → R,

Hq(x) :=
1

4π

∫
S2
hq(〈x, ξ〉) dσ(ξ) =

1

|x|

∫ |x|
−|x|

hq(t) dt =
cq
4π

(1− |x|2)q+,

is a radial,
∫
R3 Hq(x) dx = 1, and |Hq(x)| ≤ 4qcq

4π (1 + |x|)−2q. Hence, the function f
can be approximately reconstructed by

fε(x) =
(1− |x|2)

2π2

∫ 2

0

∫
S2
hε,q(|x− ξ|2 − t2)Rf(ξ, t) dσ(ξ) t2 dt. (3.2)

In the following we consider the reconstruction with respect to the regularization pa-
rameter ε and fixed q ≥ 2. We propose a reconstruction scheme generalizing the con-
volution type ideas. We express the spatial variable in spherical coordinates, cf. Figure
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3.2(left), generalize the convolution on the circle S1 to the sphere S2, and diagonalize
the convolutions by means of appropriate fast spherical Fourier transform. Two other
approaches, one based on a discretization in cylinder coordinates, cf. Figure 3.2(right),
and another one using the compact support of the function hε,q, are discussed in Sec-
tion 3.2.
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Fig. 3.2: Reconstruction geometries, spherical (left) and cylindrical coordinates
(right).

Expressing x ∈ B in spherical coordinates x = rη, r ∈ [0, 1), η ∈ S2, cf. Figure
3.2(left), yields

|x− ξ|2 = 1 + r2 − 2rη · ξ.

We write fixed arguments of functions as superscript and suppress the parameters ε
and q completely, i.e.,

hr,t : [−1, 1]→ R, hr,t(y) = hε,q(1 + r2 − t2 − 2ry), (3.3)

gt : S2 → R, gt(ξ) = t2Rf(ξ, t),

the approximation (3.2) can be written as a convolution of a function on the sphere
with a zonal kernel and a subsequent integration

fr,t(η) =
(
hr,t ∗ gt

)
(η) =

∫
S2
hr,t(η · ξ)gt(ξ) dσ(ξ), (3.4)

fε(x) = fε(rη) =
(1− r2)

2π2

∫ 2

0

fr,t(η) dt.

In order to get a fast algorithm for the convolution (3.4), we follow [12] and expand
the function hr,t in a Legendre series. The Legendre-Polynomials Pk : [−1, 1] → R
are defined as

Pk(x) =
1

2kk!

dk

dxk
(
x2 − 1

)k
,

by Y nk : S2 → C we denote the spherical harmonic of degree k ∈ N0 and order
n = −k, . . . , k. We use the addition theorem for spherical harmonics, which separates
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the dependencies of the variables η and ξ in

hr,t(η · ξ) =

∞∑
k=0

ĥr,tk Pk(η · ξ) =

∞∑
k=0

4πĥr,tk
2k + 1

k∑
n=−k

Y nk (η)Y nk (ξ), (3.5)

where the Fourier Legendre coefficients are given by

ĥr,tk =
2k + 1

2

∫ 1

−1

hr,t(x)Pk(x) dx. (3.6)

Since the sum in (3.5) converge absolutely, which follows from Theorem 3.4 below, we
can interchange the order of summation and integration, this yields

fε(rη) =
2

π
(1− r2)

∞∑
k=0

k∑
n=−k

Y nk (η)

∫ 2

0

ĥr,tk
2k + 1

∫
S2
gt(ξ)Y nk (ξ) dσ(ξ) dt. (3.7)

Both integrals are discretized at the locations where the data Rf(ξ, t) is given, i.e.,
the inner integral at the detector positions and the outer integral at the measurement
times

ξi ∈ S2, i = 0, . . . , I2 − 1,

tm =
2m

M
, m = 0, . . . ,M − 1.

We evaluate the function fε at points xj,l = rjηl, where

ηl ∈ S2, l = 0, . . . , L2 − 1,

rj =
j

J
, j = 0, . . . , J − 1.

Moreover, we approximate the series expansion of hrj ,tm as given in (3.5) at a fixed cut-
off degree N ∈ N and compute the Fourier coefficients in this series by a quadrature,

ĥ
rj ,tm
k ≈ ĥj,mk :=

N−1∑
ν=0

µνPk(λν)hrj ,tm(λν).

Provided N > 2q and the Gauß Legendre nodes and weights (λν , µν) are chosen for
the support of hr,t, this quadrature is exact since hr,t is a polynomial of degree 2q
within its support. The resulting truncation error is discussed in Section 3.1.

Our algorithm now works as follows. In a first step and for each measurement
time tm individually, we compute discrete spherical Fourier coefficients

ĝmn,k :=

I2−1∑
i=0

ωiY nk (ξi)g
tm(ξi), k = 0, . . . , N − 1, n = −k, . . . , k,

approximating the inner integral in (3.7) by numerical quadrature on the nodes ξi ∈ S2

and with some weights ωi > 0, i = 0, . . . , I2 − 1. These computations are realized
via an adjoint nonequispaced fast spherical Fourier transform (adjoint NFSFT), see
e.g. [13], the accuracy of this approximation and a precomputation of the weights is
discussed in [7].
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In a second step and for each radius rj individually, we compute

f̂ jn,k :=
2

M

M−1∑
m=0

ĥj,mk
2k + 1

ĝmn,k, k = 0, . . . , N − 1, n = −k, . . . , k, (3.8)

approximating the outer integral in (3.7) by numerical quadrature at the nodes tm
and with constant weights 2

M . Finally, we evaluate the truncated outer sum in (3.7)
at the target nodes ηl, l = 0, . . . , L2 − 1, i.e.,

fε(rjηl) ≈ f jl :=
2(1− r2

j )

π

N∑
k=0

k∑
n=−k

f̂ jn,kY
n
k (ηl), l = 0, . . . , L2 − 1, (3.9)

by a nonequispaced fast spherical Fourier transform (NFSFT). For notational conve-
nience, we define

gm :=
(
ωig

tm(ξi)
)
i=0,...,I2−1

=
(
ωit

2
mRf(ξi, tm)

)
i=0,...,I2−1

∈ RI
2

Y ξ := (Y nk (ξi))i=0,...,I2−1; k=0,...,N−1, n=−k,...,k ∈ CI
2×N2

,

Y η := (Y nk (ηl))l=0,...,L2−1; k=0,...,N−1, n=−k,...,k ∈ CL
2×N2

.

and formulate Algorithm 2.
Remark 3.1. The reconstruction yields function values on the spherical grid,

see also Figure 3.2(left). Analogously to Remark 2.1, we interpolate trilinear in the
spherical grid. We assume η ∈ S2 is given in the form

η`,n = (sin(ψ`) cos(ϕn), sin(ψ`) sin(ϕn), cos(ψ`))
>
, ϕ` =

2π`

L
, ψn =

πn

L− 1
,

` = 0, . . . , L − 1, n = 0, . . . , L − 1, and Algorithm 2 outputs values f j`,n ≈ fε(rjη`,n).

Let the discretization parameter K ∈ N and Cartesian nodes zs,t,w =
(
s
K ,

t
K ,

p
K

)
,

s, t, p = −K, . . . ,K, be given. For ease of notation, consider some fixed node zs,t,p
with ‖zs,t,p‖2 < 1 and define the corresponding indices and weights by

j =

⌊
J
√
s2 + t2 + p2

K

⌋
, wj = J

(√
s2 + t2 + p2

K
− rj

)
,

` =

⌊
L

2π

(
π + sgn(t) acos

s√
s2 + t2

)⌋
, v` =

L

2π

(
π + sgn(t) acos

s√
s2 + t2

− ϕ`
)
,

n =

⌊
L− 1

π

(
acos

p√
s2 + t2 + p2

)⌋
, un =

L− 1

π

(
acos

p√
s2 + t2 + p2

− ψn

)
.

Now, interpolate along ϕ, ψ, and r respectively, by

c00 = (1− v`)f j`,n + v`f
j
`+1,n, c01 = (1− v`)f j`,n+1 + v`f

j
`+1,n+1,

c10 = (1− v`)f j+1
`,n + v`f

j+1
`+1,n, c11 = (1− v`)f j+1

`,n+1 + v`f
j+1
`+1,n+1,

c0 = (1− un)c00 + unc01, c1 = (1− un)c10 + unc11,

f̃ε(zs,t,p) = (1− wj)c0 + wjc1.
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Algorithm 2

Input : discretization parameter I,M,L, J,N ∈ N,
measurement times tm = 2m

M , m = 0, . . . ,M − 1,
detector positions ξi ∈ S2, i = 0, . . . , I2 − 1,
data Rf(ξi, tm), i = 0, . . . , I2 − 1, m = 0, . . . ,M − 1

radii rj = j
J , j = 0, . . . , J − 1,

angles ηl ∈ S2, l = 0, . . . , L2 − 1.

Output : function values f jl ≈ fε(rjηl), l = 0, . . . , L2 − 1, j = 0, . . . , J − 1.

for m = 0, . . . ,M − 1 do
set gm =

(
ωit

2
mRf(ξi, tm)

)
i=0,...,I2−1

compute ĝm = Y ∗ξg
m

end for
for j = 0, . . . , J − 1 do
for k = 0, . . . , N − 1 do
for m = 0, . . . ,M − 1 do

compute ĥj,mk =
∑N−1
ν=0 µνPk(λν)hrj ,tm(λν)

end for
for n = −k, . . . , k do

compute f̂ jn,k =
4(1−r2j )

(2k+1)Mπ

∑M−1
m=0 ĥ

j,m
k ĝmn,k

end for
end for

compute f j = Y ηf̂
j

end for

3.1. Parameter choice and computational complexity. It remains to choose
the parameters q,N ∈ N, ε > 0, and analyze the final computational complexity of
Algorithm 2. Similar to Section 2.1, we argue that the regularization parameter ε is
bounded with respect to the discretization of the measurement time, i.e., ε ≥ CM−1.
Moreover, the parameter q ∈ N determines the smoothness of the function hr,t and
thus the asymptotic decay of its Fourier Legendre coefficients (3.6). Theorem 3.4
makes this observation precise and allows for an error estimate in Corollary 3.5 which
also shows that the asymptotic decay sets in for k ≥ Cε−1. Hence, the choiceN = CM
of the cut-off degree allows for a guaranteed accuracy and a complexity estimate of
Algorithm 2.

For notational convenience, we drop all parameters from the considered function
h : R→ R,

h(y) := hr,t(y) = hε,q(1 + r2 − t2 − 2ry).

Since

supp h = [v − u, v + u] , v :=
1 + r2 − t2

2r
, u :=

ε

2r
, (3.10)

we obtain that supp h ∩ [−1, 1] 6= ∅ if and only if

t ∈
[√

((1− r)2 − ε)+,
√

(1 + r)2 + ε
]
.

10



Consequently, we have ĥk 6= 0 and thus nonzero terms in the sum (3.8) only if m =
M1, . . . ,M2, where

M1 =

⌈
M

2

√
((1− rj)2 − ε)+

⌉
, M2 = min

{⌊
M

2

√
(1 + rj)2 + ε

⌋
,M − 1

}
and this speeds up the total computations. On the other hand, the sum (3.8) rep-
resents the integration over t and is a reasonable discretization only if at least a
constant number of samples are taken into account. Considering the critical case
r = 0, dropping the rounding, and using

M2 −M1 ≥
M

2

(√
1 + ε−

√
1− ε

)
≥ Mε

2
,

this is the case for ε = C/M .
We proceed by estimating the Fourier Legendre coefficients (3.6). Trivially, all

coefficients fulfill ĥk = 0, k ∈ N0, if supp h ∩ [−1, 1] = ∅, and we have ĥk = 0,
k ≥ 2q + 1, if [−1, 1] ⊂ supp h. We discuss the remaining case and set

[a, b] := supp h ∩ [−1, 1]. (3.11)

We start by bounding the coefficients ĥk independently of k in Lemma 3.2 and com-
pute the values of the function h and its derivatives in the endpoints of its support
in Lemma 3.3. This allows for the estimate on the decay of the Fourier Legendre
coefficients ĥk in Theorem 3.4.

Lemma 3.2. The Fourier-Legendre coefficients (3.6) satisfy∣∣∣ĥk∣∣∣ ≤ 4q(q + 1)cq
ε3

,

where cq is given in (3.1).
Proof. First note, that h′(a) = h′(b) = 0 if −1 < a < b < 1 and that Pk(1) = 1

and Pk(−1) = (−1)k, k ∈ N0. In combination with

(2k + 1)Pk = P ′k+1 − P ′k−1, k ∈ N, (3.12)

integration by parts leads to∣∣∣ĥk∣∣∣ =
2k + 1

2

∣∣∣∣∣
∫ b

a

h(s)Pk(s) ds

∣∣∣∣∣ ≤ 1

2

∫ b

a

|h′(s)| |Pk+1(s)− Pk−1(s)| ds.

Using |Pk(s)| ≤ 1 and

|h′(s)| = 2qcq|(v − s)|
ε3u2q

(u2 − (v − s)2)q−2
+

∣∣3u2 − (2q + 1)(v − s)2
∣∣

≤ 4q(q + 1)cq
ε3u

≤ 8q(q + 1)cq
ε3(b− a)

which follows from maxs∈[a,b] |v−s| ≤ maxs∈[v−u,v+u] |v−s| = u, (u2−(v−s)2)+ ≤ u2,
and 2u ≥ b− a, the assertion follows.

Lemma 3.3. The function h and its derivatives of order p = 0, . . . , 2q satisfy

h(p)(v + u) =

{
0 if p = 0, . . . , q − 2,
(−1)q22q−1−p(p+2)!cq

ε3up(q+1)

(
q+1
p−q+1

)
if p = q − 1, . . . , 2q,

11



and h(p)(v − u) = (−1)ph(p)(v + u). See (3.1) for the definition of cq.
Proof. We consider the auxiliary function gq(s) = (u2 − (v − s)2)q = (u − v +

s)q(u+ v − s)q which satisfies

g(p)
q (s) =

p∑
i=0

(
p

i

)
dp−i

dsp−i
(u− v + s)q

di

dsi
(u+ v − s)q

=

{∑p
i=0

(
q
i

)(
q
p−i
)
(−1)ip!(u− v + s)q−p+i(u+ v − s)q−i if p < q,∑q

i=(p−q)
(
q
i

)(
q
p−i
)
(−1)ip!(u− v + s)q−p+i(u+ v − s)q−i if p ≥ q,

and as a consequence

g(p)
q (v + u) =

{
0 if p < q,

(−1)q
(
q
p−q
)
p!(2u)2q−p if p ≥ q.

The assertion follows from g
(p)
q (v − u) = (−1)pg

(p)
q (v + u) and

h(s) =
(2q + 1)cq

ε3
u−2qgq(s)−

2qcq
ε3

u−2(q−1)gq−1(s).

Theorem 3.4. The Fourier Legendre coefficients ĥk of the function h obey the
inequality

∣∣∣ĥk∣∣∣ ≤ Cq
√
u
(

(1− b2)
1
4 + (1− a2)

1
4

)
ε3σq−

1
2

(
2 +

1

σ

)q+1

, k > 2q + 1,

where a < b are given by (3.11), σ = u(k − 2q), Cq = (2q + 1)!cq, and cq is given in
(3.1).

Proof. For notational convenience let [f ]
b
a := f(b) − f(a). Induction over p =

1, . . . , 2q, using integration by parts together with equation (3.12), yields

|ĥk| ≤
1

2

p−1∑
i=0

1

2i(k − (p− 1))i

i∑
l=0

(
i

l

) ∣∣∣∣[h(i)(Pk−i+2l+1 − Pk−i+2l−1)
]b
a

∣∣∣∣
+

1

2

1

2p−1(k − (p− 1))p−1

p∑
l=0

(
p

l

) ∣∣∣∣∣
∫ b

a

h(p)(s)Pk−p+2l(s) ds

∣∣∣∣∣
≤ 1

2

2q∑
i=0

1

(2(k − 2q))i

i∑
l=0

(
i

l

) ∣∣∣∣[h(i)(Pk−i+2l+1 − Pk−i+2l−1)
]b
a

∣∣∣∣ , (3.13)

where the last step for p = 2q is due to h
(2q)
q being constant. We use the inequality

|Pk+1(x)− Pk−1(x)| ≤ 2(1− x2)
1
4

√
k

, k ≥ 2, x ∈ [−1, 1],

see [2] and [18, p. 172, eq. (7.33.10)] for a related asymptotic statement. Since [a, b] (
[−1, 1], we assume that b < 1.Together with the symmetry of the derivatives, this
provides∣∣∣∣[h(i)(Pk−i+2l+1 − Pk−i+2l−1)

]b
a

∣∣∣∣ ≤ ∣∣∣h(i)(b)
∣∣∣ 2(1− b2)

1
4

√
k − i+ 2l

+
∣∣∣h(i)(a)

∣∣∣ 2(1− a2)
1
4

√
k − i+ 2l
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≤
2
∣∣h(i)(b)

∣∣
√
k − i

(
(1− b2)

1
4 + (1− a2)

1
4

)
,

where the corresponding term on the right hand side vanishes if a = −1. We proceed
in (3.13) by ∣∣∣ĥk∣∣∣ ≤ 2q∑

i=0

(1− b2)
1
4 + (1− a2)

1
4

(2(k − 2q))i

∣∣h(i)(b)
∣∣

√
k − i

i∑
l=0

(
i

l

)

=
(

(1− b2)
1
4 + (1− a2)

1
4

) 2q∑
i=0

1

(k − 2q)i

∣∣h(i)(b)
∣∣

√
k − i

.

Applying Lemma 3.3, we get

2q∑
i=0

1

(k − 2q)i

∣∣h(i)(b)
∣∣

√
k − i

≤ cq
ε3

2q∑
i=q−1

22q−1−i

(k − 2q)i+
1
2ui

(
q + 1

i− q + 1

)
(i+ 2)!

q + 1

≤ cq(2q + 1)!

ε3

2q∑
i=q−1

22q−i

(k − 2q)i+
1
2ui

(
q + 1

i− q + 1

)

=
cq(2q + 1)!

√
u

ε3σq−
1
2

q+1∑
i=0

2q+1−i

σi

(
q + 1

i

)
and the assertion follows by the binomial theorem.

Corollary 3.5. Let ε ∈ (0, 1), N ∈ N, N ≥ 2/ε, and the approximation fε in
(3.7) be truncated by fNε : B→ R,

fNε (rη) =
(1− r2)

2π2

∫ 2

0

∫
S2
hN (ηξ)gt(ξ) dσ(ξ) dt, hN =

N+2q−1∑
k=0

ĥkPk,

where r ∈ (0, 1) and η ∈ S2, then

‖fε − fNε ‖∞ ≤
C̃q(1− r2)rq−1

ε
7
2

(εN)
3
2−q‖f‖∞,

where C̃q = 32 · 6q+1 · Cq.
Proof. Using maxx∈[−1,1] |Pk(x)| = 1, we get

|fε(rη)− fNε (rη)| ≤ 1− r2

2π2

∫ 2

0

∫
S2

∣∣h(ηξ)− hN (ηξ)
∣∣ ∣∣gt(ξ)∣∣ dσ(ξ) dt

≤ 1− r2

2π2

∞∑
k=N+2q

|ĥk|
∫ 2

0

∫
S2

∫
S2
|f(ξ + tu)| |t|2 dσ(u) dσ(ξ) dt

≤ 26(1− r2)

3
‖f‖∞

∞∑
k=N+2q

|ĥk|.

Applying Theorem 3.4 together with 2 + 1
σ ≤ 3 and u = ε

2r , the sum of the Fourier
Legendre coefficients is bounded by

∞∑
k=N+2q

|ĥk| ≤
2 3q+1Cq
ε3uq−1

∞∑
k=N

k
1
2−q
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≤ 2 3q+1Cq
ε3uq−1

(
N

1
2−q +

∫ ∞
N

x
1
2−q dx

)
≤ 2 3q+2Cq(2r)

q−1

ε
7
2 (εN)q−

3
2

.

The constants in the above estimate are not optimized in any way and numerical
experiments suggest that the actual error includes an additional factor N−

1
2 . In total,

the truncation error decays algebraically with a rate depending on the smoothness
parameter q and this behavior sets in for N ≥ ε−1.

Remark 3.6. Regarding the total accuracy of Algorithm 2, we note the following.
1. Approximating the function f by (3.2) induces the approximation error ‖f −

fε‖∞. Based on the summability method presented in [1]. This error can be
estimated as

‖f − fε‖∞ ≤ cω∞(f, ε) + sup
x∈B
|cε(x)− 1| ‖f‖∞ .

Here ω∞(f, ε) = sup|y|≤ε ‖∆yf‖∞ is the modulus of continuity, ∆yf(x) =

f(x−y)−f(x), and cε(x) =
∫
BKε(x, y) dy is the normalization of the summa-

bility kernel

Kε(x, y) =
(1− |x|2)

2π2

∫
S2

hε

(
|x− ξ|2 − |y − ξ|2

ε

)
dσ(ξ),

which fulfills limε→0 cε(x) = 1 for all x ∈ B. Thus for a detailed convergence
statement, one either has to know how fast the integral over the summability
kernel Kε(x, y) converges to one or one has to normalize the kernel for all
ε and x. The error estimation of the two dimensional case (2.1) with the
corresponding summability kernel can be treated similarly. For details of the
degree of approximation we refer to [17, Section 3.4].

2. Corollary 3.5 discusses the truncation error

‖fε − fNε ‖∞

and suggests a choice of the truncation parameter N with respect to ε.
3. Finally, the discrete spherical Fourier coefficients ĝmk,n of the given data are

computed by a quadrature rule. Together with the discretization of the integral
over the measurement time, this introduces a discretization error

max
j,l
|fNε (rjηl)− f lj |.

Provided the detector positions are somewhat uniformly distributed on the
sphere, we expect a degree of exactness N ≈ I and a rate of convergence
N−q

′
where q′ is related to the smoothness of the given data, see also [7].

The integral over the measurement time is computed by a simple trapezoidal
rule whose accuracy is discussed e.g. in [19].

The above discussion supports the parameter choice ε = O(1/M), N = O(M),
and moreover, we assume O(I) = O(J) = O(N). Each spherical Fourier transforms
in Algorithm 2 is computed in O(N2 log2N) floating point operations and thus, the
most time consuming parts rely on the two innermost loops. Hence, we have a total
complexity of O(n

4
3 ) floating point operations with respect to the total problem size

n = N3.
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3.2. Alternative discretisation strategies. We briefly discuss two other ap-
proaches to discretize the reconstruction formula (3.2). Using the compact support
of the function hε,q and after changing the order of integration, we obtain

fε(x) =
(1− |x|2)

2π2

∫
S2

∫ min{2,
√
|x−ξ|2+ε}

√
(|x−ξ|2−ε)+

hε,q(|x− ξ|2 − t2)Rf(ξ, t) t2 dt dσ(ξ).

For simplicity, we consider the case of a single discretization parameter N ∈ N and re-
construct f on the Cartesian grid x`,p,j = 1

N3 (`, p, j)> ∈ [−1, 1]3, `, p, j = −N, . . . , N .
Discretizing the outer integral by N2 nodes on S2 and the inner integral over the
original interval [0, 2] by N nodes leads for fixed indices l, p, j to

fε(xl,p,j) ≈
2cq(1− |xl,p,j |2)

N3

N∑
i,n=1

N2∑
m=N1

hε,q(|xl,p,j−ξi,n|2−t2m)Rf(ξi,n, tm) t2m sinψ1,i.

In case |xl,p,j − ξi,n|2 ≥ ε, we have

(N2 −N1)2 ≤ N2

(√
|xl,p,j − ξi,n|2 + ε−

√
|xl,p,j − ξi,n|2 − ε

)2

= 2N2

(
|xl,p,j − ξi,n|2 −

√
|xl,p,j − ξi,n|4 − ε2

)
≤ 2N2

(
|xl,p,j − ξi,n|2 −

√
(|xl,p,j − ξi,n|2 − ε)2

)
= 2εN2,

in case |xl,p,j − ξi,n|2 < ε even simpler N2 − N1 ≤ N
√
|xl,p,j − ξi,n|2 + ε ≤

√
2εN .

Assuming as above ε = CN−1, this yields N2−N1 = O(
√
N) and thus, with respect to

the total problem size n = N3, a total complexity of O(n
11
6 ) floating point operations.

The second approach is a direct generalization of the two-dimensional case, where
we express the spatial variable in cylinder coordinates and thus reconstructs f for
each fixed third Cartesian coordinate separately, cf. Figure 3.2(right). We use the
parameterization ξ = (sinψ1 cosψ2, sinψ1 sinψ2, cosψ1)>, ψ1 ∈ [0, π], ψ2 ∈ [0, 2π), of
the sphere S2 and express x ∈ B in cylindrical coordinates x = (r cosϕ, r sinϕ, z)>,
r ∈ [0, 1), z ∈ (−1, 1), ϕ ∈ [0, 2π), which yields

|x− ξ|2 = 1 + r2 + z2 − 2r sinψ1 cos(ψ2 − ϕ)− 2z cosψ1.

Denoting fixed arguments of functions as superscript and skipping the parameters ε
and q completely, i.e.,

hr,t,z,ψ1(ψ2) = hε,q(1 + r2 + z2 − 2r sinψ1 cos(ψ2)− 2z cosψ1 − t2),

gt,ψ1(ψ2) = t2 · Rf(sinψ1 cosψ2, sinψ1 sinψ2, cosψ1, t),

the approximation (3.2) can be written as a periodic convolution with respect to the
angular component

fr,t,ψ1,z(ϕ) =
(
hr,t,ψ1,z ∗ gψ1,t

)
(ϕ) =

∫ 2π

0

hr,t,ψ1,z(ϕ− ψ2)gt,ψ1(ψ2) dψ2,

fε(r cosϕ, r sinϕ, z) =
1

2π2
(1− r2 − z2)

∫ 2

0

∫ π

0

fr,t,ψ1,z(ϕ) sinψ1 dψ1 dt.
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We assume, as in the two-dimensional case, equidistant measurement times t ∈ [0, 2]
and equiangular detector positions ξi,n = (sinψ1,i cosψ2,n, sinψ1,i sinψ2,n, cosψ1,i)

> ∈
S2,

tm =
2m

M
, m = 0, . . . ,M − 1,

ψ1,i =
πi

I − 1
, i = 0, . . . , I − 1,

ψ2,n =
2πn

N
, n = 0, . . . , N − 1.

Furthermore, we discretize the spatial variable x ∈ B in cylindrical coordinates x`,p,j =
(rj sinϕ`, rj cosϕ`, zp)

>,

zp =
2p+ 1− P

P
, p = 0, . . . , P − 1,

rj =
j

J
, j = 0, . . . , Jp − 1, Jp =

⌊√
1− z2

p · J
⌋
,

ϕ` =
2π`

N
, ` = 0, . . . , N − 1,

which leads to the discrete reconstruction formula

fε(x`,p,j) ≈ f j,pl :=
2(1− r2

j − z2
p)

(I − 1)MN

M−1∑
m=0

I−1∑
i=0

sinψ1,if
j,m,p,i
` (3.14)

f j,m,p,i` :=

N−1∑
n=0

hj,m,p,in−l gtm,ψ1,i (ψ2,n)

hj,m,p,ir := hε,q(1 + r2
j + z2

p − 2zp cosψ1,i − t2m − 2rj sinψ1,i cosψ2,r).

Using the idea of Algorithm 1 for each third spatial coordinate zp individually, this
approach is of particular interest if one needs to reconstruct f on a few horizontal
planes only. For fixed j,m, p, i, the inner sum again is a discrete and cyclic convolution
and realized by means of fast Fourier transforms in O(N logN) floating point opera-
tions. Taking into account the outer summations over time and angle in (3.14) for all
radii and angles, assuming that all discretization parameters are of order O(N), and
considering the total problem size n = N3 this leads to O(n5/3 log n) floating point
operations.

3.3. Generalizations. We note that the presented ideas can also be used for
the ordinary Radon transform. Consider the classical Radon transform Mf(ξ, s) =∫
y·ξ=s f(y) dy for (ξ, s) ∈ Sd−1 × R and d = 2, 3. An approximate reconstruction

formula is given by

fε(x) =
1

εd−1

∫
R

∫
Sd−1

h

(
x · ξ − s

ε

)
M(ξ, t) dσ(ξ) ds, (3.15)

where we refer the reader to [15] for details and the corresponding choice of h. Again,
expressing x, ξ in polar or spherical coordinates, respectively, results in a convolution
type inner integral. Algorithms 1 and 2 can thus be used with few modifications for
the efficient computation of (3.15).
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In [1], the authors present an approximate reconstruction formula for more general
geometries Ξ such as an ellipse. Thus one is also interested in a fast computation of
integrals of the form

∞∫
0

∫
Ξ

hε(|x− ξ|2 − t2)R(ξ, t)td−1 dµ(ξ) dt. (3.16)

Unfortunately, the presented idea to rewrite the inner integral as a convolution is
not possible in general, in particular fails if Ξ is an ellipse. However, certain lines,
triangles, rectangles, etc. together with the shift invariant argument |x− ξ| of h lead
to a convolution type integral.

4. Numerical results. The implementation of Algorithm 1 and Algorithm 2 is
realized in MATLAB and we use a Lenovo Thinkpad T60, 4GByte, Intel(R) Core(TM)2
Duo CPU P8700 2.53GHz for all numerical experiments. Besides introductory exam-
ples, our interest is the computation time for increasing discretization parameters and
the accuracy with respect to the involved parameters.

4.1. Circular means. We start by some introductory example using the well
known Shepp Logan phantom, see Figure 4.1(left). As for the ordinary Radon trans-
form, its circular mean values can be computed analytically [6], Figure 4.1(middle &
right) show the entire data and a profile for ξ = (0, 1)>, respectively.
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Fig. 4.1: Shepp Logan phantom (left) and circular mean values (middle) together
with a profile for ξ = (0, 1)> (right).

The input of Algorithm 1 are these spherical means Rf(ξn, tm), n = 0, . . . , N−1,
m = 0, . . . ,M − 1, for discretization parameters N = 360 and M = 2000. We recon-
struct the phantom f on a polar grid with J = 600 radii and set the regularization
parameter to ε = 5 · 10−3. Figure 4.2(left & middle) shows the reconstruction on a
Cartesian grid and a profile for x(2) = 0, clearly visible is a smoothing effect on the
jump singularities leading also to a damping of small details.

For the discussion of accuracy and computation time, we consider the function
f : R2 → R,

f(x) =

(
1− |x− a|

2

0.62

)3

+

, a =
1

5
(1, 1)

>
,

We fix the regularization parameter ε = 10−2, choose discretization parameters
N = M = J = 2l, l = 1, . . . , 12, and interpolate to a Cartesian grid with L = 2l−1
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Fig. 4.2: Reconstruction of the Shepp Logan phantom, on a Cartesian grid (left) and
a profile for x(2) = 0 (middle). Computation times in seconds with respect to the
common discretization parameter (right).

grid points in each coordinate, see Remark 2.1. Figure 4.2(right) shows the computa-
tion time for the reconstruction with interpolation together with the estimated order
O
(
N3
)
, where we neglected the logarithmic term. The total accuracy of Algorithm

1 is measured by

E∞ = max
`,j
|f(x`,j)− f jl |, (4.1)

and we consider this quantity for fixed parameters N = J = 500 and M = 8000 and a
decreasing regularization parameter ε = 2−l, l = 1, . . . , 10. Table 4.1 shows an error
behavior E∞ ≈ 2.8ε until the discretization becomes too coarse at ε ≈ 8

M resulting
in an increasing error.

ε 2−1 2−2 2−3 2−4 2−5

E∞ 7.1 · 10−1 4.9 · 10−1 3.0 · 10−1 1.6 · 10−1 8.6 · 10−2

ε 2−6 2−7 2−8 2−9 2−10

E∞ 4.4 · 10−2 2.2 · 10−2 1.1 · 10−2 5.7 · 10−3 4.9 · 10−2

Table 4.1: Error of the reconstruction with respect to the regularization parameter.

4.2. Spherical means. We start again by some simple test-function as depicted
in Figure 4.3(left). The spherical means of this superposition of characteristic func-
tions of balls are computed analytically [6]. Figure 4.3(middle & right) show a equa-
torial cross section for ξ(3) = 0 and a profile for ξ = (1, 0, 0)> of these mean values,
respectively.

The spherical means Rf(ξ, t) are the input of Algorithm 2, they are given on a
standard spherical grid ξi1,i2 = (sinψi1 cosϕi2 , sinψi1 cosϕi2 , cosψi1)>, where

ψi1 =
πi1
I1

i1 = 0, . . . , I1 − 1,

ϕi2 =
2πi2
I2

i2 = 0, . . . , I2 − 1,
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Fig. 4.3: Test-function (left) and spherical mean values values, the equatorial cross
section for ξ(3) = 0 (middle) and a profile for ξ = (1, 0, 0)> (right).

I = I1I2, and the discretization parameters are I1 = 100, I2 = 200, M = 1500. The
remaining input parameters of Algorithm 2 are set as follows. We choose regulariza-
tion parameters q = 4 and ε = 4 · 10−2, a cut-off degree N = 100, and reconstruct
the test-function on a standard spherical grid xj,i1,i2 = rjξi1,i2 with J = 200 radii.
The result after interpolating to a Cartesian grid and a profile for x(2) = x(3) = 0 are
shown in Figure 4.4(left & middle).
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Fig. 4.4: Reconstruction on a Cartesian grid (left) and a profile (dashed together with
the original function) for x(2) = x(3) = 0 (middle). Computation times in seconds (◦)

and estimated order O
(
N4
)

with respect to the common discretization parameter N
(right).

As for the two-dimensional case, we consider the function f : R3 → R,

f(x) =

(
1− |x− a|

2

0.62

)3

+

, a =
1

5
(1, 1, 1)

>
,

for the discussion of the accuracy and computation time. Figure 4.4(right) shows
the estimated arithmetic complexity O

(
N4
)

and the actual time usage of Algorithm
2 for fixed regularization parameters q = 4, ε = 10−2, and increasing discretization
parameters N = M = J = I1 = I2 = 25, 50, 75, . . . , 300.

Moreover, we consider the total accuracy (4.1) of Algorithm 2 with respect to
the cut-off degree N and the regularization parameters ε, q. We fix the discretization
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Fig. 4.5: Reconstruction error E∞ with respect to the cut-off degree N (left) and
the regularization parameters ε (middle) and q (right). In the left diagram, we fixed
q = 32 and ε = 1, 0.5, 0.756, 0.1 (◦, ×, +, 4). The second diagram shows E∞ for fixed
N = 50 and q = 2, 4, 32 (◦, +, ×) together with the rate ε3/2 (solid line). In the right
diagram, we consider the error with respect to q and set N = 50 and ε = 1, 0.75, 0.756

(◦, +, ×), in addition, the rate q−3/4 is shown (solid line).

parameters I1 = 100, I2 = 200, J = 100, and M = 2000. Figure 4.5(left) shows the
reconstruction error for fixed regularization parameters q = 32, ε = 1, 0.5, 0.756, 0.1,
and increasing cut-off degree N = 2, . . . , 10. Surprisingly, already a small cut-off
degree N = 10 achieves an accuracy smaller than 10−2 for ε = 0.756, 0.1 and we
thus fix the cut-off degree N = 50 subsequently. Figure 4.5(middle) shows the re-
construction error for decreasing regularization parameter ε = 0.75l, l = 0, . . . , 10
and fixed q = 2, 4, 32. Up to the finally achieved accuracy, depending mainly on the
time discretization M , the error decays at a rate ε3/2. Finally, we consider E∞ with
respect to the regularization parameter q = 2l, l = 1, . . . , 11, and for fixed N = 50
and ε = 1, 0.75, 0.756 in Figure 4.5(right). Here, the numerical error decays at a rate
q−3/4.

5. Summary. We suggested effective discretizations for the recovery of a func-
tion from its spherical means in spherical acquisition geometry. For a total problem
size n, the resulting algorithms have complexity O(n

3
2 log n) and O(n

4
3 ) for the two-

and three-dimensional case, respectively. While this is still slower than the efficient
schemes [14] for exact reconstruction formulas, it improves over the best known results
[11] for approximate inversion.
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