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Effective discretization of the two-dimensional wave equation

Torsten Görner∗ and Stefan Kunis∗∗

Institute for Mathematics, University of Osnabrück and Institute of Computational Biology, Helmholtz Zentrum München

The wave equation and associated spherical means are a widespread model in modern imaging modalities like photoacoustic
tomography. We consider a discretization for the Cauchy problem of the two dimensional wave equation by plane waves. The
considered frequencies lie on a Cartesian or on a polar grid which gives rise to efficient algorithms for the computation of the
spherical means. The theoretical findings are illustrated by a some numerical experiments.
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1 Introduction

We consider the Cauchy problem for the wave equation

∂2t p(x, t) = ∆p(x, t), p(x, 0) = f(x), ∂tp(x, 0) = g(x), x ∈ R2, t ∈ (0,∞),

where the pressure p is sought provided f, g are given. The solution of this equation for sufficiently smooth functions f, g is
given by p(x, t) = ∂t (t (N f) (x, t)) + t (N g) (x, t), with the integral operator

N f(y, t) :=
1

2π

∫ 1

0

∫ 2π

0

f

(
y + t

(
r cosϕ
r sinϕ

))
rdϕdr√
1− r2

,

see [1, §VI.13, eq. 13,14]. Now let z ∈ R2 \ {0}, ez : R2 → C, ez(x) := e2πiz·x, y ∈ R2, and t > 0 be given.
Using [2, Sec. 3.3, (6) and Sec. 12.11, (1)], we have N ez(y, t) = (2πt|z|)−1 · sin 2πt|z| · e2πiz·y.

For a discretization parameter N ∈ N, the aim of this paper is the efficient evaluation of N f(y, t), y ∈ Y := {ys ∈
(− 1

2 ,
1
2 )2 : s = 1, . . . , N}, t ∈ T := {tr ∈ (0, 1) : r = 1, . . . , N}, when f is given by N2 function values on a grid, or N2

expansion coefficients in a certain basis. The N spatial nodes Y typically discretize some closed curve around the support
of f . Certainly, the use of low-order quadrature formulas is an obvious and well known approach, but typically this leads to
O
(
N4
)

floating point operations. In the following, we introduce several Fourier based methods with an improved behavior
of the running times.

2 Effective discretizations

We define the index set J := [−N2 ,
N
2 )2 ∩ Z2 in frequency domain and the sampling grid X := {xz = z

N + 1
2N , z ∈ J} ⊂

(− 1
2 ,

1
2 )2 in space. The discrete Fourier coefficients of a function f : T2 → R are given by f̂z := 1

N2

∑
x∈X f(x)e−2πix·z,

z ∈ JN , and the trigonometric polynomial p :=
∑

z∈JN f̂zez interpolates the function f on the sampling grid X . Applying
the integral operator and evaluating at a center point y ∈ Y and a time t > 0, yields

N f(y, t) ≈ Np(y, t) = f̂0 +
∑

z∈J\{0}

f̂z
sin 2πt|z|

2πt|z|
e2πiz·y, (1)

which can be computed by one two-dimensional nonequispaced fast Fourier transform for each time t, see [3] for details. The
whole procedure is summarized in Algorithm 1 and has a total complexity of O

(
N3 logN

)
.

In our second approach, we evaluate (1) for all times T at once by lifting the two-dimensional problem to a sparse three-
dimensional one. Let J̃ := {(z, ζ) ∈ J \ {0} × R : |ζ| = |z|} \ {0} ⊂ R3 be the double cone associated to the frequencies
z ∈ J and their absolute value |z|. Moreover, let the coefficients ĥ(z,ζ) := f̂z/ζ, (z, ζ) ∈ J̃ , be defined, then a simple
calculation shows

Np(y, t) = f̂0 +
∑

z∈J\{0}

f̂z
e2πit|z| − e−2πit|z|

4πit|z|
e2πiz·y = f̂0 −

i
4πt

∑
(z,ζ)∈J̃

ĥ(z,ζ)e2πi(z,ζ)·(y,t). (2)

Under the assumption that the center points y ∈ Y discretize a smooth curve, an efficient implementation is given by one
three dimensional sparse fast Fourier transform [4, 5] and has a total complexity of O

(
N2 log5N

)
arithmetic operations.
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Algorithm 1 Discrete operator, using nonequispaced fast Fourier transforms
Input

1: discretization parameter N ∈ N, samples f ∈ RN2

, nodes ys ∈ (− 1
2 ,

1
2 )2, times tr > 0, s, r = 1, . . . , N

Output
2: g ∈ CN2

3: for z ∈ J do
4: f̂z := 1

N2

∑
x∈X

f(x)e−2πiz·x . FFT

5: end for
6: for r = 1, . . . , N do
7: for z ∈ J \ {0} do
8: h̃z, r := f̂z · sin 2πtr|z|

2πtr|z| . Multiplier
9: end for

10: h̃0,r := f̂0
11: for s = 1, . . . , N do
12: gs,r :=

∑
z∈J

h̃z,re2πiz·ys . Nonequispaced FFT

13: end for
14: end for

Finally, we restrict to the special case when Y := {ys := 1
2 (cos 2πs

N , sin 2πs
N )> : s = 0, . . . , N − 1} discretizes a circle

and the times T := {tr := r
N : r = 0, . . . , N − 1} are equally spaced. Moreover, the function f : R2 → C is assumed to be

given by the coefficients in the nonharmonic Fourier series f =
∑

z∈J′ ez with frequencies on the polar grid

J ′ :=

{
zk,l :=

l

2

(
cos

2πk

N
, sin

2πk

N

)>
: k, l = 0, . . . , N − 1

}
.

Applying the integral operator, it follows

N f(ys, tr) =

N−1∑
k=0

f̂k,0 +
N

πr

N−1∑
l=1

[
N−1∑
k=0

f̂k,l
l

e
πil
2 cos

2π(k−s)
N

]
sin

πlr

N
. (3)

For each l = 0, . . . , N − 1, the inner sum is a cyclic convolution of length N and each outer sum is a discrete sine transform
of size N . Thus mapping the coefficients f̂ ∈ CN2

to the samples g ∈ CN2

takes O(N2 logN) floating point operations.

3 Numerical experiments

In this section, we consider the running times of the computation of N2

mean values fromN2 given function samples or expansion coefficients. All
numerical experiments were performed in MATLAB R2013a on a computer
equipped with a Intel Xeon E7450 CPU with 2.4 GHz and 94 GByte main
memory. The figure shows the CPU time in seconds with respect to the
discretization parameter N . The applied algorithms are the NFFT based
approach (squares), see Equation (1), the sparse FFT based approach (trian-
gles), see Equation (2), the polar grid based approach (circles), see Equation
(3), and numerical integration with a simple rectangular rule (crosses).
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