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Effective discretization of the two-dimensional wave equation

Torsten Gorner* and Stefan Kunis™*

Institute for Mathematics, University of Osnabriick and Institute of Computational Biology, Helmholtz Zentrum Miinchen

The wave equation and associated spherical means are a widespread model in modern imaging modalities like photoacoustic
tomography. We consider a discretization for the Cauchy problem of the two dimensional wave equation by plane waves. The
considered frequencies lie on a Cartesian or on a polar grid which gives rise to efficient algorithms for the computation of the
spherical means. The theoretical findings are illustrated by a some numerical experiments.
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1 Introduction

We consider the Cauchy problem for the wave equation

where the pressure p is sought provided f, g are given. The solution of this equation for sufficiently smooth functions f, g is
given by p(x,t) = 0 (t (N f) (x,t)) + t (Ng) (x,t), with the integral operator
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see [1, §VL.13, eq. 13,14]. Now let z € R? \ {0}, e, : R? — C, e (x) := e*™2* y € R2 and t > 0 be given.
Using [2, Sec. 3.3, (6) and Sec. 12.11, (1)], we have Ne,(y,t) = (27t|z|) " - sin 27t|z| - €2712Y,

For a discretization parameter N € N, the aim of this paper is the efficient evaluation of N f(y,¢),y € Y := {ys €
(-4, 12:s=1,..., N}, teT:={t, €(0,1) : r =1,...,N}, when f is given by N? function values on a grid, or N2
expansion coefficients in a certain basis. The IV spatial nodes Y typically discretize some closed curve around the support
of f. Certainly, the use of low-order quadrature formulas is an obvious and well known approach, but typically this leads to

o (N 4) floating point operations. In the following, we introduce several Fourier based methods with an improved behavior
of the running times.

2 Effective discretizations

We define the index set J := [—%, 5) N Z? in frequency domain and the sampling grid X := {Xz =5+ ﬁ, zeJ}C
(—1,1)? in space. The discrete Fourier coefficients of a function f : T> — R are given by fr = = Doxex J(x)e2mixE,

z € Jy, and the trigonometric polynomial p := > I fzez interpolates the function f on the sampling grid X. Applying
the integral operator and evaluating at a center pointy € Y and a time ¢t > 0, yields
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which can be computed by one two-dimensional nonequispaced fast Fourier transform for each time ¢, see [3] for details. The
whole procedure is summarized in Algorithm 1 and has a total complexity of O (N 3log N )

In our second approach, we evaluate (1) for all times 7" at once by lifting the two-dimensional problem to a sparse three-
dimensional one. Let J := {(z,¢) € J\ {0} x R : [(| = |z[} \ {0} C R? be the double cone associated to the frequencies
z € J and their absolute value |z|. Moreover, let the coefficients h(z 0 = = f./C. (2,¢) € J, be defined, then a simple
calculation shows
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Under the assumption that the center points y € Y discretize a smooth curve, an efficient implementation is given by one
three dimensional sparse fast Fourier transform [4,5] and has a total complexity of O (N 2log® N ) arithmetic operations.
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Algorithm 1 Discrete operator, using nonequispaced fast Fourier transforms
Input

1: discretization parameter N € N, samples f € RN2, nodes y, € (f%, %)2 timest, > 0,s,r=1,..., N
Output

2: geE (CN2

forzGJdo

fr = N2 S f(x)e2mizx > FFT
xeX

A~ W

5: end for

6: forr=1,...,Ndo
7: forzeJ\{O} do
8

9

Frg, 7 = f - 7513537 ‘I z| > Multiplier
: end for
10: BO,T = fo
11: fors=1,...,Ndo
12: Js,r Z hy €2 > Nonequispaced FFT
13: end for <
14: end for

Finally, we restrict to the special case when Y := {y, := 1(cos 2%% sin 2£2)T : s = 0,..., N — 1} discretizes a circle

and the times 7" := {t, := & : = 0,..., N — 1} are equally spaced. Moreover, the function f : R? — C is assumed to be
given by the coefficients in the nonharmonic Fourier series f = ) ;, e, with frequencies on the polar grid
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Applying the integral operator, it follows
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Foreach! =0,..., N — 1, the inner sum is a cyclic convolution of length N and each outer sum is a discrete sine transform

of size N. Thus mapping the coefficients feCN tothe samples g € CV * takes O(N?log N) floating point operations.

3 Numerical experiments

In this section, we consider the running times of the computation of N2 . .

5 . . . . 106 |H{® 3-107°N2 ® 5.107°N3 -
mean values from N~ given function samples or expansion coefficients. All A 1. 10-IN? x 1.10-6n4 -3
numerical experiments were performed in MATLAB R2013a on a computer RO
equipped with a Intel Xeon E7450 CPU with 2.4 GHz and 94 GByte main _ ,9/‘" -
memory. The figure shows the CPU time in seconds with respect to the 103 | .- ‘::" * .|
discretization parameter /N. The applied algorithms are the NFFT based I * - % LT -
approach (squares), see Equation (1), the sparse FFT based approach (trian- i<l X ’ It .
gles), see Equation (2), the polar grid based approach (circles), see Equation 0 x.° ’ Pt L -
(3), and numerical integration with a simple rectangular rule (crosses). 10 _’ L7 . --'m P -‘e ]
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