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STABILITY RESULTS FOR SCATTERED DATA INTERPOLATION ON THE
ROTATION GROUP *

MANUEL GRAFT AND STEFAN KUNIS'

Abstract. Fourier analysis on the rotation growfD(3) expands each function into the orthogonal basis of
Wigner-D functions. Recently, fast and reliable algorighior the evaluation of finite expansion of such type, reférre
to as nonequispaced FFT 6O (3), have become available. Here, we consider the minimal notengolation of
given data by Wigner-D functions. We prove bounds on the itimmihg of this problem which rely solely on the
number of Fourier coefficients and the separation distahtteessampling nodes. The reconstructionst Fourier
coefficients fromM well separated samples is shown to take aflyiV3 log? N + M) floating point operations.
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1. Introduction. Scattered data interpolation and approximation on varimusains is
a practical problem with many important applications ireacie and engineering. In our par-
ticular setting, we are interested in functions defined errtiation grous'O(3); cf. [24, 26).
Recent applications include protein-protein docking peots [3] and texture analysis in crys-
tallography P5]. Given a set of measuremenis;,y;) € SO(3) xC,j =0,....,.M — 1,
discrete least squares approximation by Wigner-D funsti@milar to the complex expo-
nentials on the circle) relies on two ingredients: a fastriawiransform on the rotation group
(see P, 19]) and estimates on the involved condition numbers by me&Maocinkiewicz-
Zygmund inequalitiesd, 8, 13, 23].

On the other hand, interpolation by radial basis function®6 has become a mature
tool during the last decade; see e g7][and references therein. Recent generalizations to
other domains include manifolds like the Euclidean sphgt8s12, 17] or compact groups
like SO(3) [4, 5, 7]. Central themes in the study of such methods are their cgenee rates
and the conditioning of proposed solution schemes; 3&e2p] for a trade-off principle.

We are interested in the condition numbers of interpolatiatrices and follow the sem-
inal papers], 18] to prove explicit bounds for the extremal eigenvalues e&fititerpolation
problem with respect to the separation distance of the sagipbdes. More specifically, the
simple constraint that the polynomial degree is boundeuh foelow by a constant multiple
of the inverse separation distance turns out to be a shagitmmthat allows for polynomial
interpolation; cf. TheorerB.4. Our result implies thalv® Fourier coefficients can be com-
puted fromM well separated samples (N3 log? N + M) floating point operations; see
Corollary 3.5. Moreover, Corollary3.7 generalizes and improves a recent reslilt [Theo-
rems 2.8, 3.6] on the deterioration of the smallest eigervér interpolation with minimal
Sobolev norm. The proof of our main result relies on a refinexion of the packing ar-
gument p, Lemma 5.1], the construction of strongly localized polgmials on the rotation
group by using a smoothness-decay principle in Fourieryaisa[l1, 14, 16|, and a simple
eigenvalue estimate by the Gershgorin circle theorem.

2. Prerequisite. Let SO(3) := {G € R3*3 : G'G = I,detG = 1} denote the
(compact semisimple Lie) group of rotations in the EucliuspaceR?; cf. [24, 26]. The
parameterization of O(3) in terms of Euler angle§p,, 0, ¢2) € [0,2m) x [0, 7] x [0, 27)
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allows the following representation of rotations

G = G(q/)la 9) (//)2) = RZ((bl)Ry(e)RZ((Z)Q)a

where
{cos(t) —sin(t) 0 [cos(ﬁ) 0 - sin(ﬁ)]
R.(t) = |[sin(t) cos(t) 0|, Ry(t)= 0 1 0 .
0 0 1 sin(t) 0  cos(t)

Moreover, SO(3) can be identified with the three dimensional projective spsuch that
SO(3) > G — wz with rotation axisz € R?, i.e.,Gx = z, ||z| = 1, and rotation angle
w € [0, 7] given by

trace(G) — 1

w = w(G) := arccos 5

In particular, this yields the translation invariant metri
d(G,H) :=w(H'G).

Now, let a sampling set := {G, € SO(3) : j =0,...,M — 1}, M € N, be given and
measure its “nonuniformity” by the separation distance

qx = OgjfgllgMd(Gjan)-
The sampling se®’ is calledg-separated for some < ¢ < = if ¢x > ¢. Moreover, we
decompose the sampling s&tC SO(3) into shells

Rxgm ={G e X :mqg<d(G,I)< (m+1)q}, m € N. (2.1)

For measurable functions: SO(3) — C, the normalized Haar integral is given by

1 2m ™ 2m .

A function only depending on the rotation angle= w(G) is called conjugate invariant (or
central) and the above integral simplifies to

2
T

/30(3) f(G)du(G) = Oﬂ f (w) sin? (%) dw.

In analogy to the complex exponential§® on the circle, the Wigner-D function@f’k’ of
degreel € Ny and orders:, k' = —I,...,[ are the key to Fourier analysis on the rotation
group. First, let the space of square integrable functionthe unit spherg’ : S> — C be
decomposed into the mutual orthogonal spaces of spheacaldnics of degreee Ny and
let{Y) : S — C: k = —I,...,l} denote an orthonormal basis for each of them; &€ [
for details. Then, the Wigner-D functions are defined poisévby

o (@)= |

[V (6 T @ (€) and [ s (€) = i

SZ
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They form an orthogonal basis & (SO(3)), are normalized by D" [|2, = 1/(20 + 1),
and everyf € L?(SO(3)) obeys the series expansion

f Z Z flkkak

leNg k,k'=—1

with Fourier-Wigner coefficients
i =@y [ 1@ DT @) (@),
50(3)

For later reference we define a family of Sobolev spaiésc L*(SO(3)), s > 2, with
inner product and norm

(fr 9z =Y Z A+ G Wl = D e

leNg k,k'=—1
One of the more remarkable properties of the Wigner-D fumatis the addition theorem

l

S DPF(G)DPY (H) = Uy <cos M) : 2.2)

2
kk/=—1

whereUj(cosw) = sin((! + 1)w)/sin(w) denotes thé-th Chebyshev polynomial of the
second kind. For a sampling s&t= {G; € SO(3) : j =0,...,M — 1}, we call

D _ (le,k' (G])) c (CI\/IXdN
§=0,...,M,(L,k,k")E TN

the nonequispaced Fourier matrix on the rotation groupsevhe

1
dy = G (2N + 12N +2)(2N +3),
In ={(lLkK) : 1=0,...,N; bk =—1,...,1}.

Given a vector of Fourier coefficienfse C?~ we call

fe= Y oo

(Lk,E)eIN

the corresponding polynomial on the rotation group and teeby Py (SO(3)) the linear
space of all such polynomials. lIts evaluation at the sargptiades¥ C SO(3) can be
written in matrix vector form byf = (f(G;)) =o,...,.m—1 = Df.

In what follows, we study the underdetermined interpofatibscattered data ofiO(3)
by polynomials. LetM < dy, a sampling sek = {G; € SO(3) : j =0,...,M — 1},
valuesy; € Cforj =0,...,M — 1, and weightsy; > 0foril =0,..., N be given. Then,
the minimal norm interpolation problem is given by

Ak,k/2
l
min Y —— st f(G) =y, j=0..M-1 (2.3)

w,
Foukwesn
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3. Results. We begin with the following lemmas.
LEMMA 3.1.Everyg-separated sampling sét C SO(3) has cardinality

V< 109[77.
= op

Moreover, there exists g-separated sampling set of cardinality > 67/¢®. Given ag-
separated sampling set, its decomposition into shiels, ., (cf. (2.1)) allows for the cardi-
nality estimate

|RX,q,m| < 48m2 + 48m + 28.

Proof. Let B,.(H) := {G € SO(3) : d(G, H) < r} denote the ball of radius € (0, ]
aroundH € SO(3) with given measure

w(B.(H)) = / du (G) = 3/ sin? <3> dt. (3.1)
B,.(I) ™ Jo 2
From [5, Lemma 5.1], we know that (B> (1)) > %% for 0 < ¢ < 7. Since the sampling

set isg-separated, we can consider all balls of radi{® with centers at the sampling nodes
G'; to obtain the upper bound of the cardinality

L(SO@) 1097
M= p (Bgy2(I)) = 2¢%

Regarding the second claim, we presume the contrary,eteagtseparated sampling sét
with M < 67/¢® nodes be given. Around each node, we place a ball of radinsl obtain

M—1 M—1 3
p (so<3>\ U Bq<Gj>) > 1(SO@) = 3 w(By(Gy)) 2 1= M >0,

=0 =0

where the estimate(B,(G;)) < ¢*/(6) is due tosin(¢/2) < ¢/2in (3.1). Hence, the set
SO(3)\ Ujj\igl B,(G;) is not empty and there exists a poHte SO(3) such thatt U{G}
remainsg-separated.

For the last assertion, we start by the estimate

2 1 271 1 2 1 271
AL, T = (- T D g <o,
2 2z ; 2 2t2

wherex € (0, 1], n € NandT,(t) = cos(n arccost) denotes the Chebyshev polynomials of
the first kind, which derives from the upper boundx,<;<1 |77, ()| < n%. Multiplying both
sides byrv/1 — 22, substitutingr = cosr, and adding- on both sides, we get the equivalent
formulation

r+ (3n? + 4) sin(r) — cos(nr) cos(r) sin(r) < r + (3n? + 3) (sin(r) + 5

for » € [0,%]. Truncating the power series of the arcsine, we obtain thethein(r) +

sin®(r) /6 < arcsin(sin(r)) = r. Bringing(3n2+4) sin(r) to the right, dividing by—sin(r),

and setting- = ¢/2 andn = 2m + 1 results in the assertion from the packing argument by

H (Bq(m+g)(1) \ Bq(mfé)(I)) _ 4% —cos ((2m +1)2) cos (£) sin (%) .
u(By(D) § —sin ()

Equality in the above estimates holds §or 0.0

|RX,qmz| <



ETNA

Kent State University
etna@mcs.kent.edu

STABILITY RESULTS FOR SCATTERED DATA INTERPOLATION ON THE RTATION GROUP 5

LEMMA 3.2. The optimal interpolation probler2.3) is equivalent to the normal equa-
tions of the second kind

DWD"f=vy, f=WD"f, (3.2)
where D" denotes the conjugate transpose®find the weighting matrix is given By :=
diag(w) € R~ x4~ for the vector

B = (0") 1y edn

with &% =iy, 1=0,..., N, |k|,|K| <L
Moreover, let the trigonometric polynomi&ly : [—7, 7] — R and its corresponding
interpolation matrixK = (k; ;)i j—o,...,m—1 be given by

N
= Z’lf}lUgl(COS(t/Q)), kij = KN(d(G,', Gj)) (3.3)

=0
Then, we have the identiff = DW D",
Proof. In matrix-vector form the optimization problerf.@) reads as

min f W 'f st Df-—y.
fecin

So the first assertion is due t8, [Theorem 1.1.2] for the matrlDWl/Q. The second asser-
tion follows from the addition theoren2(2), i.e.,

(DWD"),; = Zwl Z DM (@) DI (Gy)

=0 k,k'=—1

3 s (s 1CE) >) :

=0
Let the normalized B-spline of ordérc N be defined by

11
99 |-303| =R 00 =085 (845 lapll =1,
with the cardinal B-spline given by

1 0<z<1,
0 otherwise.

Npi1 (2 / Ng(r)dr, Be€N, Ni(z) = {

Moreover, forN € N let

N
sl =D gs (m)

[=—N
denote a discrete norm gf.

LEMMA 3.3. LetN, 8 e NN > 5 —1> 1, andBg n(t) = le\ioﬁleQl(COS(t/Q))
with

||96||1N N
_ =N
9 <2<N+1)> ’

0<w: (3-4)
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be given and let(3) := Y_,°, ~” denote the Riemann zeta function. Then the localization
property
(2°-1)¢(8)p°

Bov (D] < es|(N+ 1177, 5= T (3 n P’ (3.5)

holds true fort € (0, 7], with normalizationBs x(0) = 1.
Proof. We first note that the Chebyshev polynomials of the first kinglrelated to the

Chebyshev polynomials of the second kindlhy= %(Ul —U;—2),Uqy = 2220(2*50,1@)%1@-
In conjunction with 8.4), we obtain

N N N N . .
Zﬁllel = 2(2 — d0.k) Tk Z?ﬁl = 2(2 —do.k) (2(N n 1)> To,.
=k

gp
1=0 k=0 k=0 H%”LN

Applying the simple equalit{; (cos(t/2)) = cos(2lt/2) = T;(cos(t)), we arrive at

N

Ba (= 20 s () T

=0

from which the assertion follows by]Lemma 7].0
We obtain the following result on the conditioning of thedrgolation problemZ.3).
THEOREM3.4.Letg > 0 andX C SO(3) be ag-separated sampling set of cardinality
M € N. Moreover, letN, 3 € N, N > 8 —1 > 3 be given and define the weighig by (3.4)
and the kernel matri¥< € RM>M py (3.3). Then, the eigenvalueg < --- < \y;_; of K
SatiSfyA() <1< Apy_1and

I\ — 1] < cp(48¢(6 — 2) +48¢(8 — 1) +28¢(8)) (N + 1)g)~” (3.6)

forj =0,...,M — 1, wherecgs is given in(3.5). In particular, the matrixD € CM*d4~ has
full rank M wheneverV + 1 > 18/¢ and this condition is optimal in the sense that there is
anotherg-separated sampling sé&t’ ¢ SO(3) of cardinality M/ and a constan€; > 0 such
thatfor N + 1 < C /q the matrixD’ has rank less thai/.

Proof. The first assertion follows frorﬁjjj\ig1 Aj = MBg n(0) = M. Moreover, the
Gershgorin circle theorem yields, for even< » < M — 1 and somé) <[ < M — 1, that

M—-1
e = kil <) [Ban(d(G4,Gh))l -
=0
T
Using the last assertion of Lemm3al and the localization property as shown in Lem#n3
the assertion follows from the estimate

g
e =1 YD Rl e By n(d(, @)

m=1
[eS)

< cp(48m? + 48m + 28) ((N + mq) "

m=1

The last claim derives from; = 38407%/719, i.e., we set3 = 4. The optimality of this
condition can be seen by applying Lem®da and using the fact that the number of Fourier
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coefficients is bounded hiy < C> N3. Hence, there is a constafit > 0 such thatV +1 <
C1/q impliesdy < M, and thugank(D') < M.0O

COROLLARY 3.5. Under the conditions of Theoref4 with 3 = 4, the conjugate
gradient method applied ¥8.2) converges linearly, i.e.,

41
R 17.2 .
ledgr <2 () el

where the initial error is¢, := W D" K 'y and the error associated to tHeth iterate f,
is given byg; := f, - WD" K 'y.

Proof. Applying the standard estimate for the convergence of tréugate gradient
method (cf. R, p. 289]) and the estimat&.() yields the assertior]

REMARK 3.6. We solve problen3(2) by a factorized variant of conjugated gradients
(CGNE, where N stands for “Normal equation” and E for “Erranimization”) [2, p. 269],
where we use the nonequispaced fast Fourier transform orotagon group 19| for fast
matrix vector multiplications withD and its adjointD". Note that for(N + 1)g > 18
a constant number of iteratiois= O(loge) suffices to decrease the error to a certain
fraction [[&|\;,-1/l|€oll;5,-+ < €. Thus, the total number of floating point operations is
O((N?3log* N + M)loge).

In the following we give an estimate of the smallest eigemedbr an interpolation prob-
lem with minimal Sobolev norm. Our result generaliz&g, [Theorems 2.8, 3.6] to the ro-
tation group and improves the involved constant. Similahtéques have been used # [
Theorem 5.1].

COROLLARY 3.7. Letqg > 0 and X C SO(3) be ag-separated sampling set of cardi-
nality A/ € N. Moreover, lets > % be given and consider the interpolation problem

i 2 s.t. G)=vy;, j=0...M—1. 3.7
flgglg Hf”HS I i) =y, J (3.7)

This problem is (only) mildly ill-posed in the sense thatsh®llest eigenvalug, (M) of the
corresponding interpolation matrix

oo

d(G;, G,
M = (m; )i j=o,...M~15 m;; = E (14 D)2 Uy <cos 7( ) j>> , (3.8)
1=0

satisfies

1 2s—2
(M) > _ 2573'
o(M) > (30) q

Proof. We start with the polynomial interpolation matr& from Theorem3.4, with
N =130/¢q]—1 > 8andps = 4. Due tog < 7, the estimate3.6) yields a smallest eigenvalue
Xo(K) > 2/3. For the corresponding weights, I = 0,. .., N, according to 8.4) we have
the formula

204+ 1 _312+3z+1
(N +1)2 (N +1)3 - =
16 L 142 +312+3z+1
lgally N+11 (N+1)21 3(N +1)3 2

- — N4l
AN+ 1) 12(N + 1) for N evenand = | %= |.
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Due to the estimatggal|, , > 1.9(V + 1) (cf. [11, Lemma 3.2]) the weights satisfy

20+1
0 < 10— l=0,...,N. 3.9
wp = 0(N—|—1)37 07 ) ( )

Now, letc € C be given. The assertion follows from the addition theor&r) (by

M-1
_ s d(G;, Gj)
Z CiCim; ;= Z CiCy Z (141D 2Uy (cos 5 ——v ) (3.10)

1,7=0 1,7=0

— Z(l +Z>172s Z

=0 k,k'=—1

M—1 2

Z Clek

1=0

We decrease the right hand side by truncatingytterms and insert our “nice” weight;:
2

N I |M-1
HMe =D 1+ )"0 e Y | aDPt (GY)
1=0 kk'=—1| i=0
N I |M-1 2
> 1 1=2s,0—1 4Dk,k’
e 3 S

N l

. 1 (N+1)3
> e o 2

M-1 ,
Z Cile’k (G
=0

1 M—-1
> (N +1) 72N etk . (3.11)
,§=0

Finally, we use the fact that the minimal value 8110 is Ao (M) ||c||3 and the last expression
in (3.19) can be bounded from below ky'20 - (¢/30)%73 - X\o(K)||c||3. D

REMARK 3.8. For the actual solution of the interpolation problehv), we use a so-
called fast summation schem2(] for multiplication with M € CM*M  Givene > 0, we
approximateM = M by truncating the series ir3(8) to a polynomial degre& € N such
that the remainder fulfills

o0 o0
i —agl = S (1402 |y, (coswﬂg [ arprrase
I=N+1 N

Due to the addition theoren2 ) and the nonequispaced FFT on the rotation grd@ fhis
yields the factorizatiod = DW D" which can be applied to a vector (N? log® N +
M) floating point operations. Since we ask at least for mildiypdsed matricedZ M, we
moreover forceN > [30/q| — 1. Thus, forg-separated sampling sets with > C3/q?
nodes, the multiplication with takes® (M log? M) flops.

REMARK 3.9. As a further application of TheoreBm we consider the minimal 2-norm
interpolation problem

J sit. G)=vy;, j=0...M—1.
fepﬁgb(g))”fHL? [ (Gy) =y;, ]

Its corresponding interpolation matrix

N
d(G;, G,
L e (CMXA/I, li,j = ;Ugl (COS 7( D) J)) s
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has uniformly bounded condition number wheneXer> 18/¢ by an argument similar to
Corollary 3.7. This time, we compare the interpolation matfixwith two kernel matrices
K, K, built upon the weightso, ;,, [ = 0,..., N, andws,, l2 = 0,...,2N, setting
£ = 4in Theorem3.4. The lower bound on the smallest eigenvalue follows a8 ihlj from
the upper bound3 9 on the weightso; 4, , i.e.,

2r+1 _ (N+1)3
)\()(L) Z)\()(K1> min Tt > ( t )

Mo (K1).
r=0,.oN W1, 10 o(K1)

We slightly change the argument for the upper bound to

2

N ! M—1 /
D@1 > > bt (G
1=0 kk'=—1 | i=0
2N l M-1 2
2r +1 . k,k'
S AN, 2 2 |2 e (G
’ = ki=—11| i=

Due to||gal|, oy < 2.1(2N + 1) (cf. [11, proof of Lemma 3.2]) the second set of weights

fulfill s, > (25\1}%)3 for the indiced, = 0, ..., N, and thus

Mr—1(L) <16(N +1)* A1 (Ko).
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