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STABILITY RESULTS FOR SCATTERED DATA INTERPOLATION ON THE
ROTATION GROUP ∗

MANUEL GRÄF† AND STEFAN KUNIS†

Abstract. Fourier analysis on the rotation groupSO(3) expands each function into the orthogonal basis of
Wigner-D functions. Recently, fast and reliable algorithms for the evaluation of finite expansion of such type, referred
to as nonequispaced FFT onSO(3), have become available. Here, we consider the minimal norm interpolation of
given data by Wigner-D functions. We prove bounds on the conditioning of this problem which rely solely on the
number of Fourier coefficients and the separation distance of the sampling nodes. The reconstruction ofN3 Fourier
coefficients fromM well separated samples is shown to take onlyO(N3 log2

N + M) floating point operations.
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1. Introduction. Scattered data interpolation and approximation on variousdomains is
a practical problem with many important applications in science and engineering. In our par-
ticular setting, we are interested in functions defined on the rotation groupSO(3); cf. [24, 26].
Recent applications include protein-protein docking problems [3] and texture analysis in crys-
tallography [25]. Given a set of measurements(Gj , yj) ∈ SO(3) × C, j = 0, . . . , M − 1,
discrete least squares approximation by Wigner-D functions (similar to the complex expo-
nentials on the circle) relies on two ingredients: a fast Fourier transform on the rotation group
(see [9, 19]) and estimates on the involved condition numbers by means of Marcinkiewicz-
Zygmund inequalities [6, 8, 13, 23].

On the other hand, interpolation by radial basis functions on R
d has become a mature

tool during the last decade; see e.g. [27] and references therein. Recent generalizations to
other domains include manifolds like the Euclidean spheres[10, 12, 17] or compact groups
like SO(3) [4, 5, 7]. Central themes in the study of such methods are their convergence rates
and the conditioning of proposed solution schemes; see [21, 22] for a trade-off principle.

We are interested in the condition numbers of interpolationmatrices and follow the sem-
inal papers [1, 18] to prove explicit bounds for the extremal eigenvalues of the interpolation
problem with respect to the separation distance of the sampling nodes. More specifically, the
simple constraint that the polynomial degree is bounded from below by a constant multiple
of the inverse separation distance turns out to be a sharp condition that allows for polynomial
interpolation; cf. Theorem3.4. Our result implies thatN3 Fourier coefficients can be com-
puted fromM well separated samples inO(N3 log2 N + M) floating point operations; see
Corollary3.5. Moreover, Corollary3.7 generalizes and improves a recent result [17, Theo-
rems 2.8, 3.6] on the deterioration of the smallest eigenvalue for interpolation with minimal
Sobolev norm. The proof of our main result relies on a refined version of the packing ar-
gument [5, Lemma 5.1], the construction of strongly localized polynomials on the rotation
group by using a smoothness-decay principle in Fourier analysis [11, 14, 16], and a simple
eigenvalue estimate by the Gershgorin circle theorem.

2. Prerequisite. Let SO(3) := {G ∈ R3×3 : G⊤G = I, detG = 1} denote the
(compact semisimple Lie) group of rotations in the Euclidean spaceR3; cf. [24, 26]. The
parameterization ofSO(3) in terms of Euler angles(φ1, θ, φ2) ∈ [0, 2π) × [0, π] × [0, 2π)
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allows the following representation of rotations

G = G(φ1, θ, φ2) = Rz(φ1)Ry(θ)Rz(φ2),

where

Rz(t) =





cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1



 , Ry(t) =





cos(t) 0 − sin(t)
0 1 0

sin(t) 0 cos(t)



 .

Moreover,SO(3) can be identified with the three dimensional projective space such that
SO(3) ∋ G 7→ ωx with rotation axisx ∈ R

3, i.e.,Gx = x, ‖x‖ = 1, and rotation angle
ω ∈ [0, π] given by

ω = ω(G) := arccos
trace(G) − 1

2
.

In particular, this yields the translation invariant metric

d(G, H) := ω(H−1G).

Now, let a sampling setX := {Gj ∈ SO(3) : j = 0, . . . , M − 1}, M ∈ N, be given and
measure its “nonuniformity” by the separation distance

qX := min
0≤j<l<M

d(Gj , Gl).

The sampling setX is calledq-separated for some0 < q ≤ π if qX ≥ q. Moreover, we
decompose the sampling setX ⊂ SO(3) into shells

RX ,q,m := {G ∈ X : mq ≤ d(G, I) < (m + 1)q} , m ∈ N. (2.1)

For measurable functionsf : SO(3) → C, the normalized Haar integral is given by

∫

SO(3)

f(G) dµ(G) =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

f(φ1, θ, φ2) sin(θ) dφ2 dθ dφ1.

A function only depending on the rotation angleω = ω(G) is called conjugate invariant (or
central) and the above integral simplifies to

∫

SO(3)

f(G) dµ(G) =
2

π

∫ π

0

f (ω) sin2
(ω

2

)

dω.

In analogy to the complex exponentialseikx on the circle, the Wigner-D functionsDk,k′

l of
degreel ∈ N0 and ordersk, k′ = −l, . . . , l are the key to Fourier analysis on the rotation
group. First, let the space of square integrable functions on the unit spheref : S2 → C be
decomposed into the mutual orthogonal spaces of spherical harmonics of degreel ∈ N0 and
let {Y k

l : S2 → C : k = −l, . . . , l} denote an orthonormal basis for each of them; see [15]
for details. Then, the Wigner-D functions are defined pointwise by

Dk,k′

l (G) :=

∫

S2

Y k′

l

(

G−1ξ
)

Y k
l (ξ) dµS2 (ξ) and

∫

S2

dµS2 (ξ) = 4π.
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They form an orthogonal basis ofL2(SO(3)), are normalized by‖Dk,k′

l ‖2
L2 = 1/(2l + 1),

and everyf ∈ L2(SO(3)) obeys the series expansion

f =
∑

l∈N0

l
∑

k,k′=−l

f̂k,k′

l Dk,k′

l

with Fourier-Wigner coefficients

f̂k,k′

l = (2l + 1)

∫

SO(3)

f (G)Dk,k′

l (G) dµ(G).

For later reference we define a family of Sobolev spacesH2
s ⊂ L2(SO(3)), s > 3

2 , with
inner product and norm

〈f, g〉H2
s

:=
∑

l∈N0

l
∑

k,k′=−l

(1 + l)
2s−1

f̂k,k′

l ĝk,k′

l , ‖f‖H2
s

=
√

〈f, f〉H2
s
.

One of the more remarkable properties of the Wigner-D functions is the addition theorem

l
∑

k,k′=−l

Dk,k′

l (G)Dk,k′

l (H) = U2l

(

cos
d (G, H)

2

)

, (2.2)

whereUl(cosω) = sin((l + 1)ω)/ sin(ω) denotes thel-th Chebyshev polynomial of the
second kind. For a sampling setX = {Gj ∈ SO(3) : j = 0, . . . , M − 1}, we call

D =
(

Dk,k′

l (Gj)
)

j=0,...,M,(l,k,k′)∈JN

∈ C
M×dN

the nonequispaced Fourier matrix on the rotation group, where

dN =
1

6
(2N + 1)(2N + 2)(2N + 3),

JN := {(l, k, k′) : l = 0, . . . , N ; k, k′ = −l, . . . , l}.

Given a vector of Fourier coefficientŝf ∈ CdN we call

f(G) =
∑

(l,k,k′)∈JN

f̂k,k′

l Dk,k′

l (G)

the corresponding polynomial on the rotation group and denote by PN (SO(3)) the linear
space of all such polynomials. Its evaluation at the sampling nodesX ⊂ SO(3) can be
written in matrix vector form byf = (f(Gj))j=0,...,M−1 = Df̂ .

In what follows, we study the underdetermined interpolation of scattered data onSO(3)
by polynomials. LetM < dN , a sampling setX = {Gj ∈ SO(3) : j = 0, . . . , M − 1},
valuesyj ∈ C for j = 0, . . . , M − 1, and weightŝwl > 0 for l = 0, . . . , N be given. Then,
the minimal norm interpolation problem is given by

min
f̂

∑

(l,k,k′)∈JN

∣

∣

∣
f̂k,k′

l

∣

∣

∣

2

ŵl
s.t. f (Gj) = yj, j = 0 . . .M − 1. (2.3)
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3. Results. We begin with the following lemmas.
LEMMA 3.1. Everyq-separated sampling setX ⊂ SO(3) has cardinality

M ≤ 109π

2q3
.

Moreover, there exists aq-separated sampling set of cardinalityM ≥ 6π/q3. Given aq-
separated sampling set, its decomposition into shellsRX ,q,m (cf. (2.1)) allows for the cardi-
nality estimate

|RX ,q,m| ≤ 48m2 + 48m + 28.

Proof. Let Br(H) := {G ∈ SO(3) : d(G, H) ≤ r} denote the ball of radiusr ∈ (0, π]
aroundH ∈ SO(3) with given measure

µ (Br(H)) =

∫

Br(I)

dµ (G) =
2

π

∫ r

0

sin2

(

t

2

)

dt. (3.1)

From [5, Lemma 5.1], we know thatµ
(

Bq/2(I)
)

≥ 2
π

q3

109 for 0 < q ≤ π. Since the sampling
set isq-separated, we can consider all balls of radiusq/2 with centers at the sampling nodes
Gj to obtain the upper bound of the cardinality

M ≤ µ (SO(3))

µ
(

Bq/2(I)
) ≤ 109π

2q3
.

Regarding the second claim, we presume the contrary, i.e., let aq-separated sampling setX
with M < 6π/q3 nodes be given. Around each node, we place a ball of radiusq and obtain

µ



SO(3)\
M−1
⋃

j=0

Bq(Gj)



 ≥ µ (SO(3)) −
M−1
∑

j=0

µ (Bq(Gj)) ≥ 1 − M
q3

6π
> 0,

where the estimateµ(Bq(Gj)) ≤ q3/(6π) is due tosin(t/2) ≤ t/2 in (3.1). Hence, the set
SO(3)\⋃M−1

j=0 Bq(Gj) is not empty and there exists a pointG ∈ SO(3) such thatX ∪{G}
remainsq-separated.

For the last assertion, we start by the estimate

n2 + 1

2
x − n2 − 1

2x
− Tn(x) =

∫ 1

x

(

T ′
n(t) − n2 + 1

2
− n2 − 1

2t2

)

dt ≤ 0,

wherex ∈ (0, 1], n ∈ N andTn(t) = cos(n arccos t) denotes the Chebyshev polynomials of
the first kind, which derives from the upper boundmax0≤t≤1 |T ′

n(t)| ≤ n2. Multiplying both
sides byx

√
1 − x2, substitutingx = cos r, and addingr on both sides, we get the equivalent

formulation

r + (3n2 + 4) sin(r) − cos(nr) cos(r) sin(r) ≤ r + (3n2 + 3)

(

sin(r) +
sin3(r)

6

)

for r ∈
[

0, π
2

]

. Truncating the power series of the arcsine, we obtain the bound sin(r) +

sin3(r)/6 ≤ arcsin(sin(r)) = r. Bringing(3n2+4) sin(r) to the right, dividing byr−sin(r),
and settingr = q/2 andn = 2m + 1 results in the assertion from the packing argument by

|RX ,q,m| ≤
µ

(

Bq(m+ 3

2
)(I) \ Bq(m− 1

2
)(I)

)

µ
(

B q

2

(I)
) = 4

q
2 − cos

(

(2m + 1) q
2

)

cos
(

q
2

)

sin
(

q
2

)

q
2 − sin

(

q
2

) .

Equality in the above estimates holds forq → 0.
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LEMMA 3.2. The optimal interpolation problem(2.3) is equivalent to the normal equa-
tions of the second kind

DŴD⊢⊣f̃ = y, f̂ = ŴD⊢⊣f̃ , (3.2)

whereD⊢⊣ denotes the conjugate transpose ofD and the weighting matrix is given bŷW :=
diag(w̃) ∈ RdN×dN for the vector

w̃ = (w̃k,k′

l )(l,k,k′)∈JN

with w̃k,k′

l = ŵl, l = 0, . . . , N, |k|, |k′| ≤ l.
Moreover, let the trigonometric polynomialKN : [−π, π] → R and its corresponding

interpolation matrixK = (ki,j)i,j=0,...,M−1 be given by

KN(t) :=

N
∑

l=0

ŵlU2l(cos(t/2)), ki,j := KN(d(Gi, Gj)). (3.3)

Then, we have the identityK = DŴD⊢⊣.
Proof. In matrix-vector form the optimization problem (2.3) reads as

min
f̂∈CdN

f̂
⊢⊣
Ŵ

−1
f̂ s.t. Df̂ = y.

So the first assertion is due to [2, Theorem 1.1.2] for the matrixDŴ
1/2

. The second asser-
tion follows from the addition theorem (2.2), i.e.,

(DŴD⊢⊣)i,j =

N
∑

l=0

ŵl

l
∑

k,k′=−l

Dk,k′

l (Gi)Dk,k′

l (Gj)

=

N
∑

l=0

ŵlU2l

(

cos
d (Gi, Gj)

2

)

.

Let the normalized B-spline of orderβ ∈ N be defined by

gβ :

[

−1

2
,
1

2

]

→ R, gβ(z) := βNβ

(

βz +
β

2

)

, ‖gβ‖L1 = 1,

with the cardinal B-spline given by

Nβ+1 (z) =

∫ z

z−1

Nβ (τ) dτ, β ∈ N, N1 (z) =

{

1 0 < z < 1,

0 otherwise.

Moreover, forN ∈ N let

‖gβ‖1,N :=

N
∑

l=−N

gβ

(

l

2(N + 1)

)

denote a discrete norm ofgβ .
LEMMA 3.3. Let N, β ∈ N, N ≥ β − 1 ≥ 1, andBβ,N(t) =

∑N
l=0 ŵlU2l(cos(t/2))

with

0 < ŵl :=
1

‖gβ‖1,N



















gβ

(

l

2(N + 1)

)

− gβ

(

l + 1

2(N + 1)

)

0 ≤ l < N,

gβ

(

N

2(N + 1)

)

l = N,

(3.4)
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be given and letζ(β) :=
∑∞

l=1 l−β denote the Riemann zeta function. Then the localization
property

|Bβ,N (t)| ≤ cβ |(N + 1)t|−β
, cβ :=

(

2β − 1
)

ζ (β)ββ

2β−1 − ζ (β)π−β
, (3.5)

holds true fort ∈ (0, π], with normalizationBβ,N (0) = 1.
Proof. We first note that the Chebyshev polynomials of the first kindare related to the

Chebyshev polynomials of the second kind byTl = 1
2 (Ul−Ul−2), U2l =

∑l
k=0(2−δ0,k)T2k.

In conjunction with (3.4), we obtain

N
∑

l=0

ŵlU2l =

N
∑

k=0

(2 − δ0,k)T2k

N
∑

l=k

ŵl =

N
∑

k=0

(2 − δ0,k)
1

‖gβ‖1,N

gβ

(

k

2(N + 1)

)

T2k.

Applying the simple equalityT2l(cos(t/2)) = cos(2lt/2) = Tl(cos(t)), we arrive at

Bβ,N (t) =
N

∑

l=0

(2 − δ0,l)
1

‖gβ‖1,N

gβ

(

l

2(N + 1)

)

Tl(cos(t))

from which the assertion follows by [8, Lemma 7].
We obtain the following result on the conditioning of the interpolation problem (2.3).
THEOREM 3.4. Let q > 0 andX ⊂ SO(3) be aq-separated sampling set of cardinality

M ∈ N. Moreover, letN, β ∈ N, N ≥ β−1 ≥ 3 be given and define the weightsŵk by (3.4)
and the kernel matrixK ∈ R

M×M by (3.3). Then, the eigenvaluesλ0 ≤ · · · ≤ λM−1 of K

satisfyλ0 ≤ 1 ≤ λM−1 and

|λj − 1| ≤ cβ(48ζ(β − 2) + 48ζ(β − 1) + 28ζ(β)) ((N + 1)q)
−β (3.6)

for j = 0, . . . , M − 1, wherecβ is given in(3.5). In particular, the matrixD ∈ CM×dN has
full rank M wheneverN + 1 ≥ 18/q and this condition is optimal in the sense that there is
anotherq-separated sampling setX ′ ⊂ SO(3) of cardinalityM and a constantC1 > 0 such
that forN + 1 ≤ C1/q the matrixD′ has rank less thanM .

Proof. The first assertion follows from
∑M−1

j=0 λj = MBβ,N(0) = M . Moreover, the
Gershgorin circle theorem yields, for every0 ≤ r ≤ M − 1 and some0 ≤ l ≤ M − 1, that

|λr − kl,l| ≤
M−1
∑

j=0
j 6=l

|Bβ,N(d(Gj , Gl))| .

Using the last assertion of Lemma3.1and the localization property as shown in Lemma3.3,
the assertion follows from the estimate

|λr − 1| ≤
⌊πq−1⌋
∑

m=1

|RX ,q,m| max
G∈RX,q,m

|Bβ,N(d(I, G))|

≤
∞
∑

m=1

cβ(48m2 + 48m + 28) ((N + 1)mq)
−β

.

The last claim derives fromc4 = 3840π4/719, i.e., we setβ = 4. The optimality of this
condition can be seen by applying Lemma3.1and using the fact that the number of Fourier
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coefficients is bounded bydN ≤ C2N
3. Hence, there is a constantC1 > 0 such thatN +1 ≤

C1/q impliesdN < M , and thusrank(D′) < M .
COROLLARY 3.5. Under the conditions of Theorem3.4 with β = 4, the conjugate

gradient method applied to(3.2) converges linearly, i.e.,

‖êl‖Ŵ
−1 ≤ 2

(

17.2

(N + 1)q

)4l

‖ê0‖Ŵ
−1 ,

where the initial error isê0 := ŴD⊢⊣K−1y and the error associated to thel-th iteratef̂ l

is given bŷel := f̂ l − ŴD⊢⊣K−1y.
Proof. Applying the standard estimate for the convergence of the conjugate gradient

method (cf. [2, p. 289]) and the estimate (3.6) yields the assertion.
REMARK 3.6. We solve problem (3.2) by a factorized variant of conjugated gradients

(CGNE, where N stands for “Normal equation” and E for “Error minimization”) [2, p. 269],
where we use the nonequispaced fast Fourier transform on therotation group [19] for fast
matrix vector multiplications withD and its adjointD⊢⊣. Note that for(N + 1)q ≥ 18
a constant number of iterationsl = O(log ε) suffices to decrease the error to a certain
fraction ‖êl‖Ŵ

−1/‖ê0‖Ŵ
−1 ≤ ε. Thus, the total number of floating point operations is

O((N3 log2 N + M) log ε).
In the following we give an estimate of the smallest eigenvalue for an interpolation prob-

lem with minimal Sobolev norm. Our result generalizes [17, Theorems 2.8, 3.6] to the ro-
tation group and improves the involved constant. Similar techniques have been used in [4,
Theorem 5.1].

COROLLARY 3.7. Let q > 0 andX ⊂ SO(3) be aq-separated sampling set of cardi-
nality M ∈ N. Moreover, lets > 3

2 be given and consider the interpolation problem

min
f∈H2

s

‖f‖H2
s

s.t. f (Gj) = yj , j = 0 . . . M − 1. (3.7)

This problem is (only) mildly ill-posed in the sense that thesmallest eigenvalueλ0(M ) of the
corresponding interpolation matrix

M = (mi,j)i,j=0,...,M−1, mi,j =
∞
∑

l=0

(1 + l)1−2sU2l

(

cos
d (Gi, Gj)

2

)

, (3.8)

satisfies

λ0(M) ≥
(

1

30

)2s−2

q2s−3.

Proof. We start with the polynomial interpolation matrixK from Theorem3.4, with
N = ⌊30/q⌋−1 ≥ 8 andβ = 4. Due toq ≤ π, the estimate (3.6) yields a smallest eigenvalue
λ0(K) ≥ 2/3. For the corresponding weightŝwl, l = 0, . . . , N , according to (3.4) we have
the formula

ŵl =
16

‖g4‖1,N































2l + 1

(N + 1)2
− 3l2 + 3l + 1

(N + 1)3
for 0 ≤ l ≤ N+1

2 − 1,

1

N + 1
− 1 + 2l

(N + 1)2
+

3l2 + 3l + 1

3(N + 1)3
for N+1

2 ≤ l ≤ N,

1

4(N + 1)
− 1

12(N + 1)3
for N even andl = ⌊N+1

2 ⌋.
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Due to the estimate‖g4‖1,N ≥ 1.9(N + 1) (cf. [11, Lemma 3.2]) the weights satisfy

ŵl ≤ 10
2l + 1

(N + 1)3
, l = 0, . . . , N. (3.9)

Now, letc ∈ CM be given. The assertion follows from the addition theorem (2.2) by

M−1
∑

i,j=0

cicjmi,j =

M−1
∑

i,j=0

cicj

∞
∑

l=0

(1 + l)1−2sU2l

(

cos
d (Gi, Gj)

2

)

(3.10)

=

∞
∑

l=0

(1 + l)1−2s
l

∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

.

We decrease the right hand side by truncating toN terms and insert our “nice” weightŝwl:

c⊢⊣Mc ≥
N

∑

l=0

(1 + l)1−2sŵ−1
l ŵl

l
∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

≥ min
r=0,...,N

(1 + r)1−2sŵ−1
r

N
∑

l=0

ŵl

l
∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

≥ min
r=0,...,N

1

20

(N + 1)3

(r + 1)2s

N
∑

l=0

ŵl

l
∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

≥ 1

20
(N + 1)3−2s

M−1
∑

i,j=0

cicjki,j . (3.11)

Finally, we use the fact that the minimal value in (3.10) is λ0(M )‖c‖2
2 and the last expression

in (3.11) can be bounded from below by1/20 · (q/30)2s−3 · λ0(K)‖c‖2
2.

REMARK 3.8. For the actual solution of the interpolation problem (3.7), we use a so-
called fast summation scheme [20] for multiplication with M ∈ CM×M . Givenε > 0, we
approximateM ≈ M̃ by truncating the series in (3.8) to a polynomial degreeN ∈ N such
that the remainder fulfills

|mi,j − m̃i,j | =
∞
∑

l=N+1

(1 + l)1−2s

∣

∣

∣

∣

U2l

(

cos
d (Gi, Gj)

2

)∣

∣

∣

∣

≤ 2

∫ ∞

N

(1 + l)2−2s dl ≤ ε.

Due to the addition theorem (2.2) and the nonequispaced FFT on the rotation group [19], this
yields the factorizationM̃ = DŴD⊢⊣ which can be applied to a vector inO(N3 log2 N +
M) floating point operations. Since we ask at least for mildly ill-posed matricesM , M̃ , we
moreover forceN ≥ ⌊30/q⌋ − 1. Thus, forq-separated sampling sets withM ≥ C3/q3

nodes, the multiplication withM̃ takesO(M log2 M) flops.
REMARK 3.9. As a further application of Theorem3.4we consider the minimal 2-norm

interpolation problem

min
f∈PN (SO(3))

‖f‖L2 s.t. f (Gj) = yj, j = 0 . . .M − 1.

Its corresponding interpolation matrix

L ∈ C
M×M , li,j =

N
∑

l=0

U2l

(

cos
d(Gi, Gj)

2

)

,
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has uniformly bounded condition number wheneverN ≥ 18/q by an argument similar to
Corollary 3.7. This time, we compare the interpolation matrixL with two kernel matrices
K1, K2 built upon the weightŝw1,l1 , l1 = 0, . . . , N , andŵ2,l2 , l2 = 0, . . . , 2N , setting
β = 4 in Theorem3.4. The lower bound on the smallest eigenvalue follows as in (3.11) from
the upper bound (3.9) on the weightŝw1,l1 , i.e.,

λ0(L) ≥ λ0(K1) min
r=0,...,N

2r + 1

ŵ1,r
≥ (N + 1)3

10
λ0(K1).

We slightly change the argument for the upper bound to

N
∑

l=0

(2l + 1)

l
∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

≤ max
r=0,...,N

2r + 1

ŵ2,r

2N
∑

l=0

ŵ2,l

l
∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

.

Due to‖g4‖1,2N ≤ 2.1(2N + 1) (cf. [11, proof of Lemma 3.2]) the second set of weights

fulfill ŵ2,l2 ≥ l2+1
(2N+1)3 for the indicesl2 = 0, . . . , N , and thus

λM−1(L) ≤ 16(N + 1)3λM−1(K2).
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[15] C. MÜLLER, Spherical Harmonics, Springer, Aachen, 1966.
[16] F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD, Localized tight frames on spheres, SIAM J. Math.

Anal., 38 (2006), pp. 574–594.
[17] F. J. NARCOWICH, N. SIVAKUMAR , AND J. D. WARD, Stability results for scattered-data interpolation on

Euclidean spheres, Adv. Comput. Math., 8 (1998), pp. 137–163.
[18] F. J. NARCOWICH AND J. D. WARD, Norms of inverses and condition numbers for matrices associated with

scattered data, J. Approx. Theory, 64 (1991), pp. 69–94.
[19] D. POTTS, J. PRESTIN, AND A. VOLLRATH, A fast Fourier algorithm on the rotation group, submitted.
[20] D. POTTS AND G. STEIDL, Fast summation at nonequispaced knots by NFFTs, SIAM J. Sci. Comput., 24

(2003), pp. 2013–2037.
[21] R. SCHABACK, Error estimates and condition numbers for radial basis function interpolation, Adv. Comput.

Math., 3 (1995), pp. 251–264.
[22] D. SCHMID, A trade-off principle in connection with the approximationby positive definite kernels, in Ap-

proximation Theory XII: San Antonio, C. K. Chui, M. Neamtu, and L. L. Schumaker, eds., Brentwood,
2008, Nashboro Press, pp. 348–359.

[23] , Marcinkiewicz-Zygmund inequalities and polynomial approximation from scattered data onSO(3),
Numer. Funct. Anal. Optim., 29 (2008), pp. 855–882.

[24] D. VARSHALOVICH, A. MOSKALEV, AND V. K HERSONSKI,Quantum Theory of Angular Momentum, World
Scientific Publishing, Singapore, 1988.

[25] K. G. V.D. BOOGAART, R. HIELSCHER, J. PRESTIN, AND H. SCHAEBEN, Kernel-based methods for in-
version of the Radon transform onSO(3) and their applications to texture analysis, J. Comput. Appl.
Math., 199 (2007), pp. 122–140.

[26] N. V ILENKIN , Special Functions and the Theory of Group Representations, Amer. Math. Soc., Providence,
RI, 1968.

[27] H. WENDLAND, Scattered Data Approximation, Cambridge Monographs on Applied and Computational
Mathematics, Cambridge University Press, Cambridge, 2005.


