
Chapter 1

Computational Methods for the
Fourier Analysis of Sparse
High-Dimensional Functions

Lutz Kämmerer, Stefan Kunis, Ines Melzer, Daniel Potts, and Toni Volkmer

Abstract A straightforward discretisation of high-dimensional problems of-
ten leads to a curse of dimensions and thus the use of sparsity has become a
popular tool. Efficient algorithms like the fast Fourier transform (FFT) have
to be customised to these thinner discretisations and we focus on two ma-
jor topics regarding the Fourier analysis of high-dimensional functions: We
present stable and effective algorithms for the fast evaluation and reconstruc-
tion of trigonometric polynomials with frequencies supported on an index set
I ⊂ Zd.

1.1 Introduction

Let d ∈ N be the spatial dimension and Td = Rd/Zd ' [0, 1)d denote the
torus. We consider trigonometric polynomials f : Td → C with Fourier co-
efficients f̂k ∈ C supported on the frequency index set I ⊂ Zd of finite
cardinality. The evaluation of the trigonometric polynomial

f(x) =
∑
k∈I

f̂k e2πik·x (1.1)

at a sampling set X ⊂ Td of finite cardinality can be written as the matrix-
vector product
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f = A f̂ , f = (f(x))x∈X ∈ C|X |, f̂ = (f̂k)k∈I ∈ C|I|, (1.2)

with the Fourier matrix A = A(I,X ) =
(

e2πik·x
)
x∈X ,k∈I ∈ C|X |×|I|.

We are interested in the following two problems:

1. Evaluation: given a support I ⊂ Zd, Fourier coefficients f̂k ∈ C, k ∈ I,
and sampling nodes X = {x` ∈ Td : ` = 0, . . . , L − 1}, evaluate the
trigonometric polynomial (1.1) efficiently, i.e., compute f = Af̂ by means
of a fast algorithm,

2. Reconstruction: given a support of Fourier coefficients I ⊂ Zd, construct a
set of sampling nodes X ⊂ Td with small cardinality L = |X | which allows
for the unique and stable reconstruction of all trigonometric polynomials
(1.1) from their sampling values f(x`). In particular, solve the system of
linear equations Af̂ ≈ f .

As an extension to the reconstruction problem, the efficient approximate
reconstruction of a smooth function from subspaces of the Wiener algebra by
a trigonometric polynomial (1.1), which guarantees a good approximation to
the function, was considered in [37].

1.2 Evaluation of trigonometric polynomials

Clearly, the straightforward evaluation of the trigonometric polynomial (1.1)
in all sampling nodes X ⊂ Td, or equivalently the matrix vector multiplication
(1.2), takes O(|X | · |I|) floating point operations. For special index sets faster
algorithms have been constructed as detailed subsequently.

1.2.1 FFT and nonequispaced FFT

We consider trigonometric polynomials supported on the full grid, i.e., with
Fourier coefficients f̂k are defined on the full d-dimensional set I := Ĝdn =

Zd ∩×d
j=1(−2n−1, 2n−1] of refinement n ∈ N and bandwidth N = 2n with

the cardinality |I| = Nd. The evaluation of the trigonometric polynomial

f(x) =
∑
k∈Ĝdn

f̂k e2πik·x (1.3)

at all sampling nodes of an equispaced grid x ∈ X = (2−nĜdn mod 1), with the
cardinality |X | = Nd, requires only O(2ndn) = O(Nd logN) by the famous
fast Fourier transform (FFT). A well understood generalisation considers an
arbitrary sampling set X = {x` ∈ Td : ` = 0, . . . , L− 1} and leads to the so-
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called nonequispaced FFT which takes O(2ndn+ | log ε|dL) = O(Nd logN +
| log ε|dL) floating point operations for a target accuracy ε > 0, see e.g. [16,
5, 59, 51, 39] and the references therein. In both cases, already the huge

cardinality of the support Ĝdn of the Fourier coefficients f̂k causes immense
computational costs for high dimensions d even for moderate refinement n.
Hence, we restrict the index set I to smaller sets.

1.2.2 Hyperbolic cross FFT

Functions of dominating mixed smoothness can be well approximated by
trigonometric polynomials supported on reduced frequency index sets, so
called dyadic hyperbolic crosses

I = Hd
n :=

⋃
j∈Nd0
‖j‖1=n

(
Zd ∩

d×
l=1

(−2jl−1, 2jl−1]

)

of dimension d and refinement n, cf. [57]. Compared to the trigonometric
polynomial in (1.3), we strongly reduce the number of used Fourier coefficients
|Hd

n| = O(2nnd−1) � 2nd. A natural spatial discretisation of trigonometric
polynomials supported on the dyadic hyperbolic cross Hd

n is given by the
sparse grid

X = Sdn :=
⋃
j∈Nd0
‖j‖1=n

d×
l=1

2−jl(N0 ∩ [0, 2jl)).

The cardinalities of the sparse grid and the dyadic hyperbolic cross are |Sdn| =
|Hd

n| = O(2nnd−1). Fig. 1.1a(left) shows an example for a two-dimensional
dyadic hyperbolic cross and Fig. 1.1a(right) depicts the corresponding sparse
grid of identical cardinality. Based on [3, 27] there exists a fast algorithm
for evaluating the trigonometric polynomial with frequencies supported on
the hyperbolic cross Hd

n at all x ∈ Sdn in O(2nnd) floating point operations,
called hyperbolic cross fast Fourier transform (HCFFT). A generalisation to
sparser index set, i.e., to index sets for so called energy-norm based hyperbolic
crosses, is presented in [22].

1.2.3 Lattice and generated set FFT

Using lattices as sampling set X is motivated from the numerical integration
of functions of many variables by lattice rules, see [58, 47, 14] for an introduc-
tion. In contrast to general lattices which may be spanned by several vectors,



4 Lutz Kämmerer, Stefan Kunis, Ines Melzer, Daniel Potts, and Toni Volkmer

−15 0 16
−15

0

16

0 0.5 1
0

0.5

1

H2
5 S2

5

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

r = M−1(1, 17)> r = (0.7907, 0.9128)>

Fig. 1.1a Dyadic hyperbolic cross H2
5

(left) and sparse grid S2
5 (right).

Fig. 1.1b Rank-1 lattice (left) and gen-
erated set Λ(r,M) (right), M = 163.

we only consider so-called rank-1 lattices and a generalisation of this concept
called generated sets [32]. For a given number L ∈ N of sampling nodes and
a generating vector r ∈ Rd, we define the generated set

X = Λ(r, L) := {x` = `r mod 1, ` = 0, . . . , L− 1} ⊂ Td.

For ` = 0, . . . , L − 1, the evaluation of a d-variate trigonometric polynomial
supported on an arbitrary frequency index set I simplifies dramatically since

f(x`) =
∑
k∈I

f̂k e2πik·x` =
∑
k∈I

f̂k e2πi`k·r =
∑
y∈Y

ĝy e2πi`y, (1.4)

with some set Y = {k · r mod 1 : k ∈ I} ⊂ T and the aliased coefficients

ĝy =
∑

k·r≡y (mod 1)

f̂k. (1.5)

Using a one-dimensional adjoint nonequispaced FFT [39], this takes
O(L logL + (d + | log ε|)|I|) floating point operations for a target accuracy
ε > 0. Moreover, given L ∈ N and a generating vector r = z/L, z ∈ Zd,
the sampling scheme Λ(r, L) is called rank-1 lattice and the computational
costs of the evaluation reduce to O(L logL+ d|I|) by applying a one dimen-
sional FFT. We stress on the fact that in both cases, the computational costs
only depend on the number L of samples subsequent to the aliasing step (1.5)
which takes d|I| floating point operations. Fig. 1.1b(left) and Fig. 1.1b(right)
show an example for a two-dimensional rank-1 lattice and generated set, re-
spectively.

1.2.4 Butterfly sparse FFT

Another generalisation of the classical FFT to nonequispaced nodes has been
suggested in [1, 62, 40]. While the above mentioned nonequispaced FFT still
relies on a equispaced FFT, the so-called butterfly scheme only relies on
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local low rank approximations of the complex exponentials - in particular
this locality allows for its application to sparse data. The idea of local low
rank approximations can be traced back at least to [21, 63, 4, 26] for smooth
kernel functions and to [45, 64, 48, 61, 13] for oscillatory kernels. In a linear
algebra setting, it was pointed out in [17] that certain blocks of the Fourier
matrix are approximately of low rank.

We consider real frequencies I ⊂ [0, 2n)d and nonequispaced evaluation
nodes x` ∈ X ⊂ [0, 1)d in

f(x`) =
∑
k∈I

f̂k e2πik·x` , ` = 0, . . . , L− 1. (1.6)

For ease of notation, we outline the main idea for the one-dimensional case.
We decompose both domains dyadically starting with the whole interval
[0, 2n) and [0, 1) as root, respectively, see also Fig. 1.2(left) and 1.2(middle).
Each pair of a frequency interval in the (n−j)-th level and a space interval in
the j-th level now fulfils the admissibility condition diam(I ′)diam(X ′) ≤ 1.
These pairs are depicted in Fig. 1.2(right), where an edge in this butterfly
graph is set if and only if the associated pairs of intervals are connected in
both trees. We note that the properly frequency shifted exponential function

X00

X10 X11

X20 X21 X22 X23 I00

I10 I11

I20 I21 I22 I23 X00,I20 X00,I21 X00,I22 X00,I23

X10,I10 X10,I11 X11,I10 X11,I11

X20,I00 X21,I00 X22,I00 X23,I00

X -tree. I-tree. Butterfly graph.

Fig. 1.2 Trees and butterfly graph for N = 4.

is a smooth function within the admissible region and can be well approxi-
mated by a trigonometric sum with equispaced frequencies interpolating in
Chebyshev nodes, see [40, Thm. 2.6] for details.

The generalisation to spatial dimension d ≥ 2 is straightforward by de-
composing I ⊂ [0, 2n)d and X ⊂ [0, 1)d dyadically in each coordinate, using
a tensor product ansatz, and interpolate in a product grid. The butterfly
scheme now traverses the butterfly graph top down. We start in the zeroth
level, sum frequencies in the finest decomposition, and approximate on the
whole spatial domain. In each subsequent level, we sum up two predecessors
including more frequencies and approximate on each smaller spatial box. The
final approximation is a function piecewise defined on the finest spatial de-
composition. The butterfly scheme guarantees the following target accuracy.
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Theorem 1.1. ([40, Thm. 3.1]). Let d, n, p ∈ N, p ≥ 5, I ⊂ [0, 2n)d,
X ⊂ [0, 1)d, and the trigonometric sum f as in (1.6), then the butterfly
approximation g obeys the error estimate

‖f − g‖∞ ≤
(Cp + 1)(C

d(n+1)
p − 1)

Cp − 1
cp‖f̂‖1.

The constants are explicitly given by

Kp :=

(
2π2

(1−cos 2π
p−1 )(p−1)2

)p−1
, Kp ≤

π4

16
, lim

p→∞
Kp = 1,

Cp :=
√
Kp

(
1 + 2

π log p
)
, cp :=

1

πp

(
π

p− 1

)p
.

In particular, the butterfly scheme achieves relative error at most ε if the
local expansion degree fulfils p ≥ max{10, 2| log ε|, 2d(n+ 1)}.

In case 1 ≤ t < d and |X | = |I| = 2nt well distributed sets on smooth
t-dimensional manifolds, the dyadic decompositions of the sets remain sparse.
Consequently, the butterfly graph, which represents the admissible pairs
where computations are performed, remains sparse as well and the computa-
tion of (1.6) takes O(2ntn(n+ | log ε|)d+1) floating point operations only.

1.3 Reconstruction of trigonometric polynomials

Beyond the fast evaluation of Fourier expansions, the sampling problem is
concerned with the recovery of the Fourier coefficients f̂k ∈ C from a sequence
of function samples. This inverse transform constructs a trigonometric poly-
nomial (1.1) such that for given data points (x`, f`) ∈ Td×C, ` = 0, . . . , L−1,
the approximate identity

f (x`) ≈ f`
is fulfilled. Thus, we aim to solve the linear system of equations Af̂ ≈ f for
the vector of Fourier coefficients f̂ ∈ C|I|. In contrast to the ordinary Fourier
matrix, its generalized analogue A is in general neither unitary nor square.
The meaningful variants of this reconstruction problem include

1. the weighted least squares approximation

‖f −Af̂‖2W =

L−1∑
`=0

w`|f` − f(x`)|2
f̂→ min, (1.7)

for the over-determined case |I| < |X |, where the weights w` compensate
for clusters in the sampling set,

2. the optimal interpolation problem



1 Sparse Fast Fourier Transforms 7

‖f̂‖2
Ŵ−1 =

∑
k∈I

|f̂k|2

ŵk

f̂→ min subject to Af̂ = f , (1.8)

for the under-determined case |I| > |X |, where the weights ŵk damp high-
frequency components, and

3. the sparse recovery problem

‖f̂‖0 = |{k ∈ I : f̂k 6= 0}| f̂→ min subject to Af̂ = f , (1.9)

for the under-determined case |I| > |X |.

The main tool in iterative methods to solve these three problems is the use
of fast matrix-vector multiplications with A and A∗ and bounding involved
condition numbers uniformly.

1.3.1 FFT and nonequispaced FFT

The reconstruction of the Fourier coefficients f̂k, k ∈ Ĝdn from sampling
values of an equispaced grid x ∈ X = (2−nĜdn mod 1), see (1.3), can be
realized by the inverse fast Fourier transform, since the Fourier matrix F :=
A(2−nĜdn, Ĝ

d
n) has orthogonal columns, and takes O(Nd logN) floating point

operations. This is no longer true for the nonequispaced Fourier matrix given
by

A := A(X , Ĝdn) =
(

e2πik·x`
)
`=0,...,L−1,k∈Ĝdn

.

Here, we use an iterative algorithm since the fast matrix times vector multi-
plication with the matrix A and A> takes only O(2ndn+ | log ε|dL) floating
point operations, see [39]. The conditioning of the reconstruction problems
relies on the uniformity of X , measured by the mesh norm and the separation
distance

δ := 2 max
x∈Td

min
j=0,...,L−1

dist(xj ,x), q := min
j,l=0,...,L−1;j 6=l

dist (xj ,xl) ,

where dist (x,x0) := minj∈Zd ‖(x + j)− x0‖∞, respectively.
For the overdetermined case Nd < L, it has been proven in [24] that the

reconstruction problem (1.7) has a unique solution if N < ( π
log 2 d δ)

−1. The
solution is computed iteratively by means of the conjugate gradient method
in [18, 2, 23], where the multilevel Toeplitz structure of A>WA is used
for fast matrix vector multiplications. Slightly more stable with respect to
rounding errors is the CGNR method, cf. [6, pp. 288], which iterates the
original residual rl = y −Af̂l instead of the residual A>Wrl of the normal
equations. Further analysis of the numerical stability of the least squares
approximation (1.7) relies on so-called Marcinkiewicz-Zygmund inequalities
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which establish norm equivalences between a trigonometric polynomial and
its samples, see e.g. [60, 44, 19, 38] and references therein for specific variants.

For the underdetermined case Nd > L, the optimal interpolation problem
(1.8) has been shown to be stable in [41] if the sampling set is well separated
with respect to the polynomial degree and the weights ŵk are constructed
by means of a so-called smoothness-decay principle. In particular, we proved
that the nonequispaced Fourier matrix A has full rank L for every polynomial
degree N > 2 d q−1 and proposed to solve problem (1.8) by a version of the
conjugate gradient method in combination with the nonequispaced FFT to
efficiently perform each iteration step.

1.3.2 Hyperbolic cross FFT

The inverse HCFFT is not an orthogonal transform, but a fast algorithm
is developed by reverting all steps of the HCFFT, see [3, 27], which makes
this spatial discretisation most attractive in terms of efficiency. The inverse
HCFFT requires also only O(2nnd) floating point operations. However, we
proved in [35] that this transform is mildly ill conditioned, i.e.,

cd2
n
2 n

2d−3
2 ≤ cond2A(Hd

n, S
d
n) ≤ Cd2

n
2 n2d−2, n→∞,

cnd
2n ≤ cond2A(Hd

n, S
d
n) ≤ Cnd2n, d→∞.

In particular, we loose more than 5 decimal digits of accuracy already for
d = 10 and n = 5 in the worst case.

1.3.3 Lattice and generated set FFT

As pointed out in Section 1.2.3, the evaluation of trigonometric polynomials
with frequencies supported on an arbitrary index set I, i.e., the mapping
from the index set I in frequency domain to the rank-1 lattice in spatial
domain reduces to a single one-dimensional FFT and thus can be computed
very efficiently and stable. For the inverse transform, mapping the samples
of a trigonometric polynomial to its Fourier coefficients on a specific fre-
quency index set, we discuss the recently presented necessary and sufficient
conditions on rank-1 lattices allowing a stable reconstruction of trigonomet-
ric polynomials supported on hyperbolic crosses and the generalisation to
arbitrary index sets in the frequency domain. We suggest approaches for de-
termining suitable rank-1 lattices using a component-by-component strategy
[33, 12]. In conjunction with numerical found lattices, we show that this new
method outperforms the classical hyperbolic cross FFT for realistic problem
sizes [36].
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The use of generated sets, a generalisation of rank-1 lattices, as spatial
discretisations offers an additional suitable possibility for sampling sparse
trigonometric polynomials. The fast computation of trigonometric polynomi-
als on generated sets can be realized using the nonequispaced fast Fourier
transform (NFFT), cf. [39]. A simple sufficient condition on a generated set
Λ(r, L) allows the fast, unique and stable reconstruction of the frequencies
of a d-dimensional trigonometric polynomial from its samples along Λ(r, L).
In contrast to searching for suitable rank-1 lattices, we can use continuous
optimization methods in order to determine generated sets that are suitable
for reconstruction, see [32].

Reconstruction using rank-1 lattices. In order to state constructive
existence results for reconstructing rank-1 lattices, i.e., rank-1 lattices which
allow the unique reconstruction of trigonometric polynomials supported on a
fixed frequency index set I, we define the difference set

D(I) := {k− l : k, l ∈ I}

of the frequency index set I. As a consequence of [34, Cor. 1] we formulate
the following

Theorem 1.2. Let I ⊂ {k ∈ Zd : k−a ∈ [0, |I|−1]d} for a fixed a ∈ Zd being
a frequency index set of finite cardinality. Then there exists a reconstructing
rank-1 lattice of prime cardinality L,

|I| ≤ L ≤ |D(I)| ≤ |I|2, (1.10)

such that all trigonometric polynomials f with frequencies supported on I can
be reconstructed from the sampling values (f(x))x∈Λ(r,L). Moreover, the corre-

sponding generating vector r ∈ L−1Zd can be determined using a component–
by–component strategy and the reconstruction of the Fourier coefficients can
be realized by a single one-dimensional FFT of length L, and thus takes
O(L logL+ d|I|) floating point operations.

Proof. The result follows from [34, Cor. 1], Bertrand’s postulate, and equa-
tions (1.4) and (1.5). ut

We stress on the fact, that [34, Cor. 1] is a more general result on arbitrary
frequency index sets I. Some simple additional assumptions on L allow to
replace the condition I ⊂ {k ∈ Zd : k−a ∈ [0, |I|−1]d} by I ⊂ Zd, |I| <∞.

In fact, the cardinality of the difference set D(I) is the theoretical upper
bound in (1.10) for the number of samples needed to reconstruct trigonomet-
ric polynomials with frequencies supported on the index set I using a rank-1
lattice. This cardinality depends mainly on the structure of I.

Example 1.1. Let I = Idp,N := {k ∈ Zd : ‖k‖p ≤ N}, N ∈ N, be the `p-ball,

0 < p ≤ ∞, of size N , see Fig. 1.3. The cardinality of Idp,N is bounded by

cp,dN
d ≤ |Idp,N | ≤ CdN

d and cp,dN
d ≤ D(Idp,N ) ≤ Cd2

dNd, cp,d, Cd ∈ R,
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0 < cp,d ≤ Cd. Consequently, we can find a reconstructing rank-1 lattice of

size L ≤ C̃p,d|Idp,N |, C̃p,d > 0, using a component-by-component strategy.
On the other hand, we obtain for the limit p → 0 the frequency index

set I := {k ∈ Zd : ‖k‖1 = ‖k‖∞ ≤ N}, N ∈ N, which is supported on the
coordinate axis. We have |I| = 2dN+1 and (2N+1)2 ≤ |D(I)| ≤ (2dN+1)2.
Hence, we estimate c̃d|I|2 ≤ |D(I)|, c̃d ∈ R, 0 < c̃d, and the theoretical upper
bound on L is quadratic in |I| for fixed dimension d. In fact, reconstructing
rank-1 lattices for these specific frequency index sets need at least a number
of L ∈ Ω(N2) nodes, cf. [36, Thm. 3.5]. ut

Example 1.2. More useful frequency index sets in higher dimensions d > 2 are
so-called (energy-norm based) hyperbolic crosses, cf. [3, 7, 8]. In particular,
we consider frequency index sets I of the form

Id,TN :=

{
k ∈ Zd : max(1, ‖k‖1)

T
T−1

d∏
s=1

max(1, |ks|)
1

1−T ≤ N

}
,

with parameter T ∈ [0, 1) and N ∈ N, see Fig. 1.4 for illustration. The fre-

quency index set Id,0N , i.e., T = 0, is in fact a symmetric hyperbolic cross

and frequency index sets Id,TN , T ∈ (0, 1), are called energy-norm based hy-

perbolic crosses. The cardinality of Id,TN can be estimated, cf. [37, Lem. 2.6],
by

cd,0N logd−1N ≤ |Id,TN | ≤ Cd,0N logd−1N, for T = 0,

cd,TN ≤ |Id,TN | ≤ Cd,TN, for T ∈ (0, 1),

where cd,T , Cd,T ∈ R, 0 < cd,T ≤ Cd,T . Since the axis cross is a subset of the

considered frequency index sets, i.e., {k ∈ Zd : ‖k‖1 = ‖k‖∞ ≤ N} ⊂ Id,TN ,

T ∈ [0, 1), we obtain (2N + 1)2 ≤ |D(Id,TN )|. On the other hand, we obtain

upper bounds of the cardinality of the difference set D(Id,TN )

|D(Id,TN )| ≤ C̃d,0N
2 logd−2N, for T = 0, cf. [33, Thm. 4.8],

|D(Id,TN )| ≤ |Id,TN |
2 ≤ C2

d,TN
2, for T ∈ (0, 1).
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Consequently, Theorem 1.2 offers a constructive strategy in order to find
reconstructing rank-1 lattices for Id,TN of cardinality L ≤ |D(Id,TN )|. We would
like to stress that, at least for T ∈ (0, 1), we are able to construct rank-1
lattices of optimal order in N , cf. [33, Lem. 2.1, 2.3, and Cor. 2.4].

For instance, Fig. 1.1b(left) shows a reconstructing rank-1 lattice for the
symmetric hyperbolic cross I2,08 and Fig. 1.1b(right) shows an example for a
generated set, which allows the exact reconstruction of trigonometric poly-
nomials with frequencies supported on I2,08 . The condition number of the
Fourier matrix A(I,X ) is always one when X is a reconstructing rank-1 lat-
tice for I, since the columns of the Fourier matrix A(I,X ) are orthogonal.
When the frequency index set I = I2,08 and X is the specific generated set in
Fig. 1.1b(right), then the condition number of the Fourier matrix A(I,X ) is
approximately 2.19. ut

Reconstruction using generated sets. Up to now, we discussed recon-
structing rank-1 lattices. We generalized this concept to so-called generated
sets, cf. Section 1.2.3 and determined sufficient and necessary conditions on
generated sets Λ(r, L) guaranteeing a full rank and stable Fourier matrix
A(I, Λ(r, L)) in [32]. In general, the set Y = {k · r mod 1 : k ∈ I} ⊂ T is of
our main interest, where r ∈ Rd is the generating vector of the generated set
Λ(r, L). We determined the necessary condition |Y| = |I| in order to obtain
a Fourier matrix A(I, Λ(r, L)) of full column rank.

Theorem 1.3. Let I ⊂ Zd be an arbitrary d-dimensional index set of finite
cardinality |I|. Then, the exact reconstruction of a trigonometric polynomial
with frequencies supported on I is possible from only |I| samples using a
suitable generated set.

Proof. Let r ∈ Rd be a vector such that

k · r mod 1 6= k′ · r mod 1 for all k,k′ ∈ I, k 6= k′. (1.11)

For instance, Theorem 1.2 guarantees the existence of a reconstructing rank-
1 lattice Λ(r, L) for the index set I, where r ∈ L−1Zd fulfills property
(1.11). The corresponding Fourier matrix A := (e2πik·x`)`=0,...,L−1; k∈I =
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(e(2πik·r)
`

)`=0,...,L−1; k∈I is a transposed Vandermonde matrix of (full col-
umn) rank |I|. If we use only the first |I| rows of the matrix A and

denote this matrix by Ã, the matrix Ã := (e(2πik·r)
`

)`=0,...,|I|−1; k∈I =

(e(2πiyj)
`

)`=0,...,|I|−1; j=0,...,|I|−1 is a transposed Vandermonde matrix of size
|I| × |I|, where yj := kj · r mod 1 and I = {k0, . . . ,k|I|−1} in the specified
order. Furthermore, the determinant of the transposed Vandermonde matrix
Ã, cf. [31, Sec. 6.1], is det Ã =

∏
1≤k<j≤|I|−1(e2πiyj − e2πiyk) 6= 0 , since

we have e2πik·r 6= e2πik
′·r for all k,k′ ∈ I, k 6= k′, due to property (1.11).

This means the transposed Vandermonde matrix Ã has full rank |I| and is
invertible. ut

Theorem 1.3 states that L = |I| many samples are sufficient to exactly
reconstruct a trigonometric polynomial with frequencies supported on the
index set I. In general, we obtain a large condition number for the Fourier

matrix Ã := (e(2πik·r)
`

)`=0,...,|I|−1; k∈I . Using L > |I| samples, we also ob-
tain matrices A(I, Λ(r, L)) of full column rank, since the first |I| rows of the
matrix A(I, Λ(r, L)) are linear independent. In practice, growing oversam-
pling, i.e., increasing L > |I|, decreases at least an estimator of the condition
number of A(I, Λ(r, L)), as published in [32]. In this context, for each gen-
erating vector r ∈ Rd bringing |Y| = |I| and constant C > 1 we determined
a generated set of size LC such that the Fourier matrix A(I, Λ(r, LC)) has
a condition number of at most C, cf. [32, Cor. 1]. We discuss a nonlinear
optimization strategy in [32] in order to determine generated sets Λ(r, L)
of relatively small cardinality bringing a Fourier matrix A(I, Λ(r, L)) with
small condition number.

The reconstruction of trigonometric polynomials with frequencies sup-
ported on an fixed index set I from samples along a generated set can be re-
alized solving the normal equation, which can be done in a fast way using the
one-dimensional NFFT and a conjugate gradient (CG) method. One step of
the CG method needs one NFFT of length L and one adjoint NFFT of length
L. Consequently, one CG step has a complexity of O(L logL+(d+| log ε|)|I|),
cf. Section 1.2.3. The convergence of the CG method depends on the condition
number of the Fourier matrix A(I, Λ(r, L)). Hence, generated sets Λ(r, L)
with small condition numbers of the Fourier matrices A(I, Λ(r, L)) guaran-
tee a fast approximative computation of the reconstruction of trigonometric
polynomials with frequencies supported on the index set I.

1.3.4 Random sampling and sparse recovery

Stable deterministic sampling schemes with a minimal number of nodes are
constructed above. For arbitrary index sets of frequencies I ⊂ Zd, we showed
that orthogonality of the Fourier matrix necessarily implies |X | ≥ |D(I)|
which scales (almost) quadratically in |I| for several interesting cases. In
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contrast, injectivity of the Fourier matrix can be guaranteed for a linear
scaling and numerical results also support that a small oversampling factor
suffices for stable reconstruction generically. Subsequently, we discuss known
results for randomly chosen sampling nodes. Let d ∈ N, arbitrary frequencies
I ⊂ Zd be given, and sampling nodes X are drawn independently from the
uniform distribution over the spatial domain Td, then [25] implies

cond2A(I,X ) ≤
√

1 + γ

1− γ
, γ ∈ (0, 1), if |X | ≥ C

γ2
|I| log

|I|
η
,

with probability 1− η, where C > 0 is some universal constant independent
of the spatial dimension d. A partial derandomization can be obtained by
randomly subsampling a fixed rank-1 lattice as constructed in Theorem 1.2.

Moreover, random sampling has been applied sucessfully in compressed
sensing [15, 9, 20] to solve the sparse recovery problem (1.9), where both the

support I ⊂ I0 ⊂ Zd as well as the Fourier coefficients f̂k ∈ C, k ∈ I, of the
expansion (1.1) are sought. Provided a so-called restricted isometry condition
is met, the sparse recovery problem can be solved efficiently, cf. [10, 54, 55,
56, 46, 42], and with probability at least 1− η this is true if

|X | ≥ C|I| log4 |I0| log
1

η
.

Well studied algorithmic approaches to actually solve the sparse recovery
problem are then `1-minimisation [11], orthogonal matching pursuit [43], and
their successors. Optimal variants of these algorithms have the same arith-
metic complexity as one matrix vector multiplication with A(I0,X ), which
is however worse than the recent developments [29, 28].

Prony type methods. In contrast to compressed sensing approaches,
Prony type methods aim to recover the finite and real support I within the
bounded interval [−N2 ,

N
2 ] as well as the Fourier coefficients in the nonhar-

monic Fourier series
f(x) =

∑
k∈I

f̂ke2πikx,

from equally spaced samples f( `N ), ` = 0, . . . , L − 1, cf. [52, 50, 49]. If the
number of samples fulfils a Nyquist type relation

|X | ≥ CNq−1I

with respect to the nonharmonic bandwidth N and to the separation distance
qI := min{|k − k′| : k, k′ ∈ I, k 6= k′}, then a newly developed variant of the
Prony method solves this reconstruction problem in a stable way, see e.g. [53].
The arithmetic complexity O(|I|3) has been improved for integer frequencies
in [30] using ideas from [29, 28].
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