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Sparse grid discretisations allow for a severe decrease in the number of degrees
of freedom for high dimensional problems. Recently, the corresponding hyperbolic
cross fast Fourier transform has been shown to exhibit numerical instabilities al-
ready for moderate problem sizes. In contrast to standard sparse grids as spatial
discretisation, we propose the use of oversampled lattice rules known from mul-
tivariate numerical integration. This allows for the highly efficient and perfectly
stable evaluation and reconstruction of trigonometric polynomials using only one
ordinary FFT. Moreover, we give numerical evidence that reasonable small lat-
tices exist such that our new method outperforms the sparse grid based hyperbolic
cross FFT for realistic problem sizes.
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1 Introduction

A straightforward discretisation of problems in d spatial dimensions with 2n grid points in
each coordinate leads to an exponential growth 2dn in the number of degrees of freedom.
Even an efficient algorithm like the d-dimensional fast Fourier transform (FFT) uses C2dndn
floating point operations. This is labelled as the curse of dimensions and the use of sparsity
has become a very popular tool in such situations. For moderately high dimensional problems
the use of sparse grids and the approximation on hyperbolic crosses has led to problems of
total size Cd2nnd−1. Moreover, the approximation rate hardly deteriorates for functions in
an appropriate scale of spaces of dominating mixed smoothness, see e.g. [23, 26, 19, 18, 22, 2,
20, 24]. The FFT has been adapted to this thin discretisation as hyperbolic cross fast Fourier
transform (HCFFT), which uses Cd2nnd floating point operations, in [1, 9, 7]. See also [6]
for a recent generalisation to arbitrary spatial sampling nodes and [10] for a more accurate
scheme for functions of low regularity. However, these classical sparse grid discretisations are
numerically unstable as shown in [11].
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On the other hand, lattice rules are well known for the integration of functions of many
variables, see e.g. [21] and references therein. The numerical integration of trigonometric
polynomials of certain total degree or with Fourier coefficients supported on a hyperbolic
cross have been studied recently in [4] and [14], respectively. In particular, the authors of [3]
were able to search for so called rank-1 integration lattices in an effective way.

In this paper, we consider rank-1 lattice rules as spatial discretisation for the hyperbolic
cross FFT. The evaluation of trigonometric polynomials, i.e., the mapping from the hyperbolic
cross in frequency domain to the lattice in spatial domain reduces to a single one dimensional
FFT and thus can be computed very efficiently and stable. For the inverse transform, mapping
the samples of a trigonometric polynomial to its Fourier coefficients on the hyperbolic cross,
we show which necessary and sufficient conditions allow for unique and stable reconstruction.
In conjunction with numerical found lattices, we show that this new method outperforms the
classical hyperbolic cross FFT for realistic problem sizes.

The paper is organised as follows: After introducing the necessary notation and collecting
basic facts about hyperbolic crosses, we state the evaluation and reconstruction problem
formally. In Section 3, we define the rank-1 lattices and show how this simplifies the evaluation
problem. The reconstruction problem is divided into a qualitative and a quantitative question,
i.e., we ask for uniqueness and stability, respectively. After a first example, we show that
unique reconstruction is possible even for a number of samples equal to the dimension of the
underlying space of trigonometric polynomials. However, this scheme is numerically unstable.
Asking for perfectly stable reconstruction is equivalent to asking for orthogonal columns of
the corresponding Fourier matrix. We show that this is possible only for so-called integer
rank-1 lattices and in general only for a number of samples which scales almost quadratically
in the dimension of the underlying space of trigonometric polynomials. Besides the usage of
known integration lattices for the reconstruction problem, we search for appropriate rank-1
lattices of minimal cardinality. In this context, we consider generating vectors of Korobov
form which have some useful properties and allow for a reduction of computational costs for
searching. All theoretical results are illustrated by numerical experiments in Section 4 and
we conclude our findings in Section 5.

2 Prerequisite

Throughout this paper let the spatial dimension d ∈ N and a refinement n ∈ N0 be given. We
denote by Td ∼= [0, 1)d the d-dimensional torus and consider Fourier series f : Td → C, f(x) =∑

k∈Zd f̂ke2πik·x with Fourier coefficients f̂k ∈ C. The space of trigonometric polynomials Πj ,
j ∈ Nd

0, consists of all such series with Fourier coefficients supported on Ĝj = ×dl=1Ĝjl ,
Ĝj = Z ∩ (−2j−1, 2j−1], i.e., f : Td → C,

f(x) =
∑

k∈Ĝj

f̂ke2πik·x.

A well adapted spatial discretisation of trigonometric polynomials relies on the full spatial grid
Gj = ×dl=1Gjl , Gj = 2−j(Z ∩ [0, 2j)). If all refinements are equally set to jl = n, l = 1, . . . , d,
we write Ĝdn and Gdn instead of Ĝ(n,...,n)T and G(n,...,n)T , respectively. Note that these grids
have 2dn degrees of freedom in frequency as well as in spatial domain.
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2.1 Hyperbolic crosses

For functions of appropriate smoothness, it is much more effective to restrict the frequency
domain to hyperbolic crosses. To this end, we introduce the dyadic hyperbolic cross

Hd
n :=

⋃
j∈Nd0
‖j‖1=n

Ĝj = {k ∈ Ĝj : j ∈ Nd
0, ‖j‖1 = n} ⊂ Ĝdn ⊂ Zd, (2.1)

see Figure 2.1(a) and furthermore we define for 0 < γ ≤ 1 and n > 0, 2n ∈ N, the symmetric
hyperbolic cross

H̃d,γ
n := {k ∈ Zd :

d∏
s=1

max
(

1,
|ks|
γ

)
≤ 2n} (2.2)

see Figure 2.1(b) and (c). H̃d,γ
n are also called weighted Zaremba crosses, see e.g. [3], and

simply Zaremba crosses for γ = 1, cf. [25], respectively. We have the following relations
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Figure 2.1: Two dimensional hyperbolic crosses.

between the dyadic and the symmetric hyperbolic crosses.

Lemma 2.1. For d, n ∈ N, we have the inclusions

Hd
n ⊂ H̃

d, 1
2

n ⊂ H̃d,1
n−1 ⊂ H̃

d, 1
2

n−1+d ⊂ H
d
n−1+2d,

where each individual inclusion is best possible.

Proof. For subsequent use, set Ik := {s ∈ {1, . . . , d} : ks 6= 0}, k ∈ Zd. Regarding the first
assertion, let k ∈ Hd

n and j ∈ Nd
0, ‖j‖1 = n, with k ∈ Ĝj be given. Then we infer |ks| ≤ 2js−1

for s ∈ Ik and k ∈ H̃d, 1
2

n since
∏d
s=1 max(1, 2|ks|) =

∏
s∈Ik

max(1, 2|ks|) ≤
∏
s∈Ik

2js ≤ 2n.

Secondly, we have 0 = (0, . . . , 0)> ∈ H̃d, 1
2

n ∩ H̃d,1
n−1 and k ∈ H̃d, 1

2
n \ {0} implies Ik 6= ∅ and

thus k ∈ H̃d,1
n−1 since

2n ≥
d∏
s=1

max(1, 2|ks|) =
∏
s∈Ik

2|ks| = 2|Ik|
∏
s∈Ik

|ks| ≥ 2
d∏
s=1

max(1, |ks|).
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The third inclusion is a consequence of
∏d
s=1 max(1, 2|ks|) ≤

∏d
s=1 2 max(1, |ks|) ≤ 2n−1+d.

For notational convenience, we prove the last assertion in its equivalent form H̃
d, 1

2
n ⊂ Hd

n+d

for n ≥ d. For k ∈ H̃d, 1
2

n choose j ∈ Nd
0 such that ks ∈ Ĝjs \ Ĝjs−1, s ∈ Ik, and js = 0 else.

This yields

2‖j‖1−2|Ik| ≤
∏
s∈Ik

|ks| and 2‖j‖1−d ≤ 2‖j‖1−|Ik| ≤
∏
s∈Ik

2|ks| ≤ 2n

from which ‖j‖1 ≤ n+ d and thus k ∈ Ĝj ⊂ Hd
n+d follows.

Note that all inclusions are best possible as k1 = (2n−1, 0, . . . , 0) ∈ Hd
n ∩ H̃

d, 1
2

n ∩ H̃d,1
n−1 and

k2 = (−2n−1,−1, . . . ,−1) ∈ H̃d,1
n−1 ∩ H̃

d, 1
2

n−1+d ∩H
d
n−1+2d show.

We have for fixed dimension d that |Hd
n| = 2nnd−1

2d−1(d−1)!
+O(2nnd−2), cf. [9], and so the above

inclusions also yield |H̃d,γ
n | = Cd2nnd−1. Moreover note, that including so-called additional

logarithmic smoothness terms in (2.2) one can define “energy based” hyperbolic crosses that
remove the term nd−1, see [2, pp. 31-35].

We denote by Πd
n and Π̃d,γ

n the trigonometric polynomials on the dyadic hyperbolic cross
f : Td → C,

f(x) =
∑

k∈Hd
n

f̂k e2πik·x,

and the trigonometric polynomials on the symmetric hyperbolic cross f : Td → C,

f(x) =
∑

k∈H̃d,γ
n

f̂k e2πik·x,

respectively. With these thin discretisations in frequency domain, we are concerned with
the evaluation of trigonometric polynomials at sampling nodes and the inverse problem of
reconstructing a trigonometric polynomial from its samples. In view of Lemma 2.1, all state-
ments that follow might be adapted to the symmetric hyperbolic crosses. Our evaluation and
reconstruction problems read as follows

i) given Fourier coefficients f̂ =
(
f̂k

)
k∈Hd

n

∈ C|Hd
n| and a set of sampling nodes X = {xj ∈

Td : j = 0, . . . ,M − 1}, evaluate the trigonometric polynomial f(xj), j = 0, . . . ,M − 1,

ii) construct a set of sampling nodes X ⊂ Td with small cardinality M which allows for
the stable reconstruction of all trigonometric polynomials f ∈ Πd

n, represented by their
Fourier coefficients f̂ ∈ C|Hd

n|, from the sample values f(xj), j = 0, . . . ,M − 1.

For notational convenience let the Fourier matrix and the index matrix

A :=
(

e2πik·x
)

x∈X ,k∈Hd
n

, H ∈ Z|H
d
n|×d, hk,s = ks, k ∈ Hd

n, s ∈ {1, . . . , d},

be given.
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3 Lattices

An introduction to lattices, in particular their use for the efficient integration of functions
of many variables can be found in [21]. In contrast to general lattices which are spanned by
several vectors, we only consider so-called rank-1 lattices. This simplifies the evaluation of
trigonometric polynomials dramatically and allows for several necessary and sufficient condi-
tions for unique or stable reconstruction. For given M ∈ N and r ∈ Rd, we define the rank-1
lattice

X := {xj = jr mod 1, j = 0, . . . ,M − 1} ⊂ Td.

Hence, evaluation problem i) from above reads as

f(xj) =
∑

k∈Hd
n

f̂ke2πik·xj =
∑

k∈Hd
n

f̂ke2πijk·r =
∑
y∈Y

ĝye2πijy, j = 0, . . . ,M − 1, (3.1)

with some set Y = {k · r mod 1 : k ∈ Hd
n} ⊂ T and the aliased coefficients

ĝy =
∑

k·r=y mod 1

f̂k.

This is a one dimensional adjoint nonequispaced fast Fourier transform, see e.g. [13], which
takes O(M logM + | log ε||Hd

n|) floating point operations, where ε is the user specified target
accuracy. Moreover, for given M ∈ N and z ∈ Zd, we define the integer rank-1 lattice

X := {xj = jz/M mod 1, j = 0, . . . ,M − 1} ⊂ Td.

Analogously, we obtain for the evaluation problem i) a one dimensional fast Fourier transform
of length M and thus total complexity O(M logM + |Hd

n|). We stress on the fact that, in
both cases, the computational complexity depends only on M and |Hd

n| but not on the spatial
dimension d itself.

Concerning the reconstruction problem ii), i.e., the construction of good lattices, we have

ii-a) the qualitative question under which assumption the lattice allows for unique recon-
struction or equivalently A has full column rank |Hd

n|,

ii-b) the quantitative question under which assumption the lattice allows for stable recon-
struction or in the strictest sense A∗A = MI.

In particular, the condition in ii-b) allows for the computation of all Fourier coefficients by
means of a one dimensional fast Fourier transform of length M instead of solving some system
of linear equations.

Lemma 3.1. Let n, d ∈ N. For rank-1 lattices with lattice size M ≥ |Hd
n|, the matrix

A ∈ CM×|Hd
n| has full column rank |Hd

n| if and only if the entries of the vector

y = (yk)k∈Hd
n

= Hr mod 1

are distinct.
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Proof. Let yk = yl for some k, l ∈ Hd
n, k 6= l, then obviously, the kth and lth column of the

Fourier matrix A coincide, i.e.,

e2πik·jr = e2πijyk = e2πijyl = e2πil·jr, j = 0, . . . ,M − 1.

On the contrary, we only consider the first |Hd
n| rows of the Fourier matrix A, i.e.,

Ã = (e2πik·jr)j=0,...,|Hd
n|−1;k∈Hd

n
=
(
(e2πiyk)j

)
j=0,...,|Hd

n|−1;k∈Hd
n
.

The square matrix Ã is the adjoint of a Vandermonde matrix with distinct nodes zk = e2πiyk ∈
C, k ∈ Hd

n, and thus invertible.

Example 3.2. [A minimal and unstable lattice] Let n, d ∈ N. Due to the fact that Hd
n ⊂ Ĝdn,

we might choose the rank-1 lattice of size M = |Hd
n| with generating vector

r = (r, r2, . . . , rd)>, r = 2−n, (3.2)

which yields for y = Hr the distinct entries

yk = k · r =
d∑
s=1

2−snks, 2−snks ∈ 2−snĜn.

Thus, Lemma 3.1 assures an invertible Fourier matrix A, i.e., the reconstruction problem
allows for a unique solution. However, Figure 3.1 shows that this lattice covers only part of
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(a) M = |H2
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4 |, z = (2−4, 2−8)>.
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(c) M = |H2
6 |, z = (2−6, 2−12)>.

Figure 3.1: Two-dimensional minimal and unstable lattices for refinements 2, 4 and 6.

the torus. We show that this leads to a highly unstable reconstruction problem by giving a
lower bound on the condition number of the associated Fourier matrix A.

For dimension d = 2 and refinement n > 2, consider the constant function e(x) = 1 which
has the only nonzero Fourier coefficient at k = 0, i.e., ê ∈ C|H2

n|, êk = δk. We obtain

‖A‖22 ≥
‖Aê‖22
‖ê‖22

= |H2
n|.

For the norm of the inverse Fourier matrix A−1, we use that the “Fejér kernel”

f(x) = f(x1, x2) =
1

2n−1

(
sin 2n−1πx2

cosπx2

)2
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is localised with respect to the spatial variable x2 and its Fourier coefficients are supported
on one axis of the hyperbolic cross. Straightforward calculation shows ‖f̂‖22 = ‖f‖22 ≥ 1

32n.
Since the above lattice fulfils X ⊂ [0, 1) × [0,M2−2n) ⊂ [0, 1) × [0, 5

16), n ≥ 2, we estimate
|f(x)| ≤ 23−n for x ∈ X and conclude

‖A−1‖22 ≥
‖f̂‖22
‖Af̂‖22

≥ 23n

192|H2
n|

and finally cond2A = ‖A‖2‖A−1‖2 ≥
2

3n
2

14
.

We note in passing that this lower bound can be improved by stronger localised kernels and
that analogous estimates follow for higher spatial dimensions.

Lemma 3.3. Let n, d ∈ N, the sampling set X be a rank-1 lattice generated by the vector
z ∈ Rd and the vector Hz mod M contain distinct entries only. Then

A∗A = MI if and only if X is an integer rank-1 lattice.

Proof. Clearly, the entries of the matrix fulfil

(A∗A)k,l =
M−1∑
j=0

e2πij
(k−l)·z
M =

M, for (k − l) · z = 0 mod M
e2πi(k−l)·z−1

e2πi
(k−l)·z
M −1

else,

from which the assertion for the principal diagonal of A∗A follows. Because of Z 3 (k−l)·z 6=
0 mod M for k, l ∈ Hd

n with k 6= l and z ∈ Zd with distinct entries of Hz mod M , we get
A∗A = MI.

Moreover, hyperbolic crosses of refinements n ≥ 1 contain at least the origin k0 = (0, . . . , 0)>

and the unit vectors k1 = (1, 0, . . . , 0)>, . . . ,kd = (0, . . . , 0, 1)>. Hence for zs ∈ R \ Z,
s ∈ {1, . . . , d}, the entry (A∗A)k0,ks 6= 0 and so A∗A 6= MI.

Example 3.4. [Refinement n = 1 and large spatial dimension d] The hyperbolic cross
Hd

1 contains the origin k0 = (0, . . . , 0)> and the unit vectors k1 = (1, 0, . . . , 0)>, . . . ,kd =
(0, . . . , 0, 1)>. Thus, the associated index matrix H ∈ Z(d+1)×d fulfils

Hz =
(

0
Id

)
z =

(
0
z

)
, for z = (1, 2, . . . , d)> ∈ Zd.

Now, let the sampling nodes be given by xj = jz/(d+ 1) mod 1 ∈ [0, 1]d, j = 0, . . . , d, then

k` · xj = jk` · z =
j`

d+ 1
mod 1

and thus the hyperbolic cross discrete Fourier transform

fj = f(xj) =
∑

k∈Hd
1

f̂ke2πik·xj =
d∑
`=0

f̂k`e
2πi j`

d+1 , j = 0, . . . , d,

is simply a discrete Fourier transform of length d+1 and can be computed inO(d log d) floating
point operations. In particular, the evaluation on this rank-1 lattice is, up to a constant, a
unitary transform and thus numerically stable. In contrast to this it is shown in [11, Section
4] that in this special case we can evaluate the considered trigonometric polynomial at the
classical sparse grid nodes in O(d) floating point operations but the condition number is larger
than (d−1)2

2 . Moreover note that the chosen vector z is up to permutations the only possible,
since its components have to be nonzero and distinct modulo d+ 1.
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Figure 3.2: Lattices for refinement n = 1.

Based on the “non-convexity” of the hyperbolic cross, we conclude our introductory con-
siderations by showing that no matter what spatial discretisation is chosen, the number of
sampling nodes M has to scale almost like the square of the number of Fourier coefficients
|Hd

n| in order to allow for orthogonal columns in the Fourier matrix.

Theorem 3.5. Let n, d ∈ N, if the Fourier matrix fulfils

A∗A = MI then M ≥ 22n−2.

Proof. The condition A∗A = MI reads as

1
M

M−1∑
j=0

e2πi(k−l)·xj = δk−l

for all k, l ∈ Hd
n. Since {k − l : k, l ∈ Hd

n} ⊃ {k − l : k, l ∈ G̃dn−1}, G̃dn−1 = Ĝ2
n−1 × {0}d−2,

this implies
1
M

M−1∑
j=0

e2πi(k−l)·xj = δk−l

for all k, l ∈ G̃dn−1. The assertion follows by reading this in matrix notation, i.e., Ã
∗
Ã = MI,

Ã = (e2πik·xj )j=0,...,M−1;k∈G̃dn−1
, for which M ≥ |G̃dn−1| = 22n−2 is necessary.

3.1 Integration lattices

The hyperbolic cross can be embedded into the full d-dimensional grid, i.e., Hd
n ⊂ Ĝdn. This

allows either to use the integer rank-1 lattice of size M = 2dn with generating vector z =
(1, 2n, 22n, . . . , 2(d−1)n)>, which is a sheared version of the full d-dimensional spatial grid Gdn,
or a slightly larger full d-dimensional spatial grid Gn1 × . . .×Gnd , n ≤ ns ∈ R, with coprime
sizes 2ns , s = 0, . . . , d, which can be represented as integer rank-1 lattice as well.

Alternatively, we might use lattices for the computation of Fourier coefficients, i.e., the
integration of particular trigonometric polynomials. Lattices have been intensively studied
for integrating functions of many variables and integer rank-1 lattices allow for the error
representation

1
M

M−1∑
j=0

f(jz/M)−
∫

Td
f(x) dx =

∑
k∈Zd\{0}

k·z=0 mod M

f̂k
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for f(x) =
∑

k∈Zd f̂ke2πik·x, see e.g. [21, Thm. 2.8]. In particular, these lattices of size M
allow for the exact integration of trigonometric polynomials f ∈ Π̃d,1

n if and only if the vector
k · z 6= 0 mod M for k ∈ H̃d,1

n \ {0}. In contrast, invertibility of the Fourier matrix A and
thus A∗A = MI is equivalent to the condition that all numbers k · z mod M are distinct,
see Lemmata 3.1 and 3.3. Nevertheless, we might use integration lattices for the hyperbolic
cross FFT as follows. The Fourier coefficients of f(x) =

∑
k∈Hd

n
f̂ke2πik·x are given by

f̂k =
∫

Td
f(x)e−2πik·x dx, k ∈ Hd

n,

and they will be computed exactly if and only if the lattice rule integrates all trigonometric
polynomials with Fourier coefficients supported on the difference set

Hdn := {l ∈ Zd : l = k1 − k2 : k1,k2 ∈ Hd
n}.

We easily establish the following inclusions which make known integration lattices suitable
for our purpose. For the first inclusion, see also [16, Remark 1.10].

Lemma 3.6. Let n, d ∈ N then

Hdn ⊂ Hd
2n+min(n,d−1) and Hdn ⊂ H̃

d,1
2n−2,

and these inclusions are best possible.

Proof. For the first inclusion we consider the difference k − l for k, l ∈ Hd
n. Let u,v ∈ Nd

0

with ‖u‖1 ≤ n , ‖v‖1 ≤ n and k ∈ Ĝu, l ∈ Ĝv be given and set u = 0 if k = 0. This yields
for s = 1, . . . , d the inclusions

ks − ls ∈


Ĝus , for ls = 0,
Ĝvs+1, for ls 6= 0 and ks = 0,
Ĝmax(us,vs)+1 ⊂ Ĝus+vs , for ls 6= 0 and ks 6= 0.

Clearly k − l ∈ Ĝj with

‖j‖1 =
d∑
s=1
ls=0

us +
d∑
s=1

ls 6=0, ks=0

(vs + 1) +
d∑
s=1

ls 6=0, ks 6=0

(us + vs)

≤
d∑
s=1

us +
d∑
s=1

vs + |{s ∈ {1, . . . , d} : ls 6= 0 and ks = 0}|

≤

{
‖v‖1 + min(n, d), for k = 0,
‖u‖1 + ‖v‖1 + min(n, d− 1), otherwise,

≤ 2n+ min(n, d− 1).

The assertion follows from k − l ∈ Ĝj ⊂ Hd
2n+min(n,d−1) and this inclusion is best possible

as k = (2n−1, 0, . . . , 0)> ∈ Hd
n and l1 = (0, 1, . . . , 1, 2n−d+1)> ∈ Hd

n for d ≤ n or l2 =
(0, 1, . . . , 1︸ ︷︷ ︸

n times

, 0, . . . , 0)> ∈ Hd
n for d > n show.
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The second inclusion follows for n = 1 from the fact that k, l ∈ Hd
1 results in max(1, |ks −

ls|) = 1, s = 1, . . . , d, and so k − l ∈ H̃d,1
0 . For n > 1, Lemma 2.1 yields

Hdn ⊂ H̃
d, 1

2
n := {l ∈ Zd : l = k1 − k2 : k1,k2 ∈ H̃

d, 1
2

n }

and we subsequently show H̃d,
1
2

n ⊂ H̃d,1
2n−2. As in the proof of Lemma 2.1, we set Ik = {s ∈

{1, . . . , d} : ks 6= 0} and get for k, l ∈ H̃d, 1
2

n the estimate

22n ≥
∏
s∈Ik

2|ks|
∏
s∈Il

2|ls| = 2|Ik∪Il|
∏

s∈Ik\Il

|ks|
∏

s∈Il\Ik

|ls|
∏

s∈Ik∩Il

2|ks||ls|.

Together with |ks|, |ls| ≥ 1 and |ks − ls| ≤ |ks|+ |ls| ≤ 2|ks||ls| this yields

22n ≥ 2|Ik∪Il|
∏

s∈Ik\Il

|ks − 0|
∏

s∈Il\Ik

|0− ls|
∏

s∈Ik∩Il

max(1, |ks − ls|)

= 2|Ik∪Il|
d∏
s=1

max(1, |ks − ls|).

Consequently, we get
∏d
s=1 max(1, |ks − ls|) ≤ 22n−|Ik∪Il|. If |Ik ∪ Il| ≥ 2 this yields the

assertion k − l ∈ H̃d,1
2n−2 already. In case |Ik ∪ Il| = 1, we have only one index s0 ∈ Ik ∪ Il

and since |ks0 |, |ls0 | ≤ 2n−1 and n > 1 direct calculation shows

d∏
s=1

max(1, |ks − ls|) = max(1, |ks0 − ls0 |) ≤ 2n ≤ 22n−2.

Clearly, for k = (2n−1, 0, . . . , 0)> ∈ Hd
n and l = (0, 2n−1, 0, . . . , 0)> ∈ Hd

n the difference k − l

is an element of H̃d,1
2n−2 \ H̃

d,1
2n−3.

3.2 Search strategies for integer rank-1 lattices

Subsequently, we sketch some strategies to find stable integer rank-1 lattices, defined by their
generating vector z ∈ Zd and the lattice size M ∈ N, algorithmically. Due to Lemmata 3.1
and 3.3, the criterion we decide on is that all entries of the vector Hz mod M are distinct. Of
course, this excludes all generating vectors where the entries of Hz are not distinct. Using
additionally that the hyperbolic cross Hd

n is invariant under coordinate permutations, the
entries of the generating vector can be assumed to be ordered. Possible lattice sizes M are
restricted by Theorem 3.5 and the discussion in Section 3.1. Hence, a global search can be
restricted to

z ∈ {l ∈ Nd : 0 < l1 < . . . < ld ≤M}, max(22n−2, |Hd
n|) ≤M < M ≤ 2nd,

where M denotes an upper bound on the lattice size, e.g., the size of a known integration
lattice for trigonometric polynomials with Fourier coefficients supported onHd

2n+d−1 or H̃d,1
2n+2,

cf. Lemma 3.6. Moreover, updating the lattice size M in an outer loop, we can always restrict
the entries of the generating vector to z1 < . . . < zd < M and obtain Algorithm 1.
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Algorithm 1 Lattice search, global
Input: n, d ∈ N refinement and dimension of Hd

n, defining H

M ≤ 2nd upper bound on the lattice size

for M = max(22n−2, |Hd
n|), . . . ,M do

for z ∈ {l ∈ Nd : 0 < l1 < . . . < ld < M} do
if (Hz mod M) has distinct entries then

return z,M
end if

end for
end for

Output: z ∈ Zd, M ∈ N generating vector and lattice size

3.2.1 Random generating vectors

Certainly, the global search for minimal lattices in Algorithm 1 for higher spatial dimensions
or large problem sizes is not practicable. Hence, randomly chosen generating vectors are a
first useful option for searching small lattices and now the inner loop runs through possible
lattice sizes M . Moreover, a runtime limit seems to be an appropriate break condition for
Algorithm 2.

Algorithm 2 Lattice search, random generating vector
Input: n, d ∈ N refinement and dimension of Hd

n, defining H

M ≤ 2nd upper bound on the lattice size
T > 0 runtime limit

M∗ = M
while current runtime has not exceeded T do

draw z ∈ [1,M∗)d ∩ Zd
if (Hz) has distinct entries then

for M = max(22n−2, |Hd
n|), . . . ,M∗ − 1 do

if (Hz mod M) has distinct entries then
z∗ = z, M∗ = M , breakfor

end if
end for

end if
end while

Output: z∗ ∈ Zd, M∗ ∈ N generating vector and lattice size (if successful)

3.2.2 Generating vectors of Korobov form

Let d, a ∈ N, we define the generating vector of Korobov form

z = z(a) = (1, a, a2, . . . , ad−1)> ∈ Zd,

which gives rise to the following result.

11



Lemma 3.7. Let d, n, a ∈ N, d, n, a > 1, and z = z(a) = (1, a, . . . , ad−1)> be given, then the
following holds true

i) if and only if 3 · 2n−2 ≤ a, the vector Hz contains distinct values,

ii) if 3 · 2n−2 ≤ a ≤ 2n and M < (1 + a)2n−1, then Hz mod M is not distinct,

iii) if d = 2, a = 3 · 2n−2, and M = (1 + 3 · 2n−2)2n−1, then Hz mod M is distinct.

Proof. i) We start with dimension d = 2, assume a ≥ 3 · 2n−2, k, l ∈ H2
n, k 6= l, and show

that (k− l) · z = k1− l1 + a(k2− l2) is nonzero, which is trivially fulfilled for k2 = l2. In case
|k2 − l2| ≥ 1, we use

max
k,l∈H2

n
k2 6=l2

|k1 − l1| < 3 · 2n−2

from which (k1 − l1) + a(k2 − l2) 6= 0 follows. For d > 2, the same argument yields kd−1 −
ld−1 + a(kd − ld) 6= 0 and thus inductively

(k − l) · z =
d∑
j=1

aj−1(kj − lj) = k1 − l1 + a(· · ·+ a(kd−1 − ld−1 + a(kd − ld)) · · · ) 6= 0.

On the contrary, a < 3 · 2n−2, k, l ∈ Hd
n with k1 − l1 = a, k2 = 0, l2 = 1, and kj = lj = 0,

j = 3, . . . , d, yields k ·z = l ·z. Moreover, this extends to k ·z(M−a) = l ·z(M−a) mod M .
ii) Regarding the second assertion, let m, r ∈ N0 be chosen such that

M = (1 + a)2n−1 − 1− s, s = ma+ r, 0 ≤ m < 2n−1, 0 ≤ r < a, (3.3)

and consider k, l ∈ Hd
n, k = (−2n−1 + 1 + r, 0, . . . , 0)> and l = (0, 2n−1 −m, 0, . . . , 0)> which

fulfil k 6= l and

k · z = (a+ 1)2n−1 − 1−ma− r − 2n−1 + 1 + r = a(2n−1 −m) = l · z mod M.

Clearly, this result remains true if 2n < a under the additional assumption that M is of the
particular form (3.3) with r < 2n.

iii) Finally, the first assertion guarantees that the entries of k · z are distinct and since
|k · z| < M , we have

k · z mod M =

{
k · z k · z ≥ 0,
k · z +M k · z < 0,

and thus, k · z = l · z mod M if and only if k · z ≥ 0 and l · z < 0 or vice versa. We proceed
by three distinct cases, where we always assume k, l ∈ H2

n, l · z < 0 and thus have l2 ≤ 0 and

l · z mod M = l1 + l2 · 3 · 2n−2 + (1 + 3 · 2n−2)2n−1 > 2n since l2 ≥

{
−2n−1 + 1 l1 = 0,
−2n−2 + 1 l1 6= 0.

The assertion follows for k = (k1, 0)> with k1 = 0, . . . , 2n−1 by k · z = k1 ≤ 2n−1, and for
k = (k1, 1)>, k1 = −2n−2 + 1, . . . , 2n−2, by 2n−1 + 1 ≤ k · z ≤ 2n. Last but not least, let
k = (k1, k2)>, k2 = 2, . . . , 2n−1, then −2n−3 + 1 ≤ k1 ≤ 2n−3 and in particular

k · z mod 3 · 2n−2 = k1 mod 3 · 2n−2 ∈ {0, . . . 2n−3} ∪ {5 · 2n−3 + 1, . . . , 3 · 2n−2 − 1}.
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For l2 < 0, we have −2n−3 + 1 ≤ l1 ≤ 2n−3 and thus

(l · z mod M) mod 3 · 2n−2 = 2n−1 + l1 ∈ {3 · 2n−3 + 1, . . . , 5 · 2n−3}.

The only remaining case l2 = 0 results in l · z mod M > 3 · 2n−2 · 2n−1 ≥ k · z.

In conjunction with Theorem 3.5, the last assertion shows that for spatial dimension d = 2
an integer rank-1 lattice of minimal cardinality, allowing for unique and thus stable recon-
struction, has size

22n−2 ≤M ≤ (1 + 3 · 2n−2)2n−1 ≈ 3
2

22n−2.

We conclude this section by the following search algorithm for lattices in Korobov form.

Algorithm 3 Lattice search, Korobov form, global
Input: n, d ∈ N refinement and dimension of Hd

n, defining H

M ≤ 2nd upper bound on the lattice size

M∗ = M
for a = 3 · 2n−2, . . . ,M∗ − 3 · 2n−2 do

for M = max(22n−2, |Hd
n|), . . . ,M∗ − 1 do

if condition (3.3) is not fulfilled then
z = (1, a, . . . , ad−1)>

if (Hz mod M) has distinct entries then
z∗ = z, M∗ = M , breakfor

end if
end if

end for
end for

Output: z∗ ∈ Zd, M∗ ∈ N generating vector and lattice size

4 Numerics

Subsequently, we search for stable lattices of small cardinality by different strategies, com-
pare these discretisations to integration lattices, and finally perform CPU timings for the
different variants of the hyperbolic cross discrete Fourier transform. Following the commonly
accepted concept of reproducible research, all numerical experiments are included in our pub-
licly available toolbox [5]. The numerical results were obtained on an Intel Core i7 CPU 920
with 2.67GHz, 12GByte RAM running OpenSUSE Linux 11.1 X86 64 and Matlab 7.10.0.499.
Time measurements were performed by employing the Matlab function cputime.

4.1 Finding new lattices

Integer lattices of small cardinality can be found by Algorithms 1 - 3 and variants thereof.
Table 4.1 summarises these efforts for spatial dimensions d = 2, 3, 6, 10. The problem size
is given by the refinement n and by the cardinality of the hyperbolic cross Hd

n in the first
two columns, respectively. The output of Algorithm 1 is denoted by Mglob and we stopped
this global search subsequent to the refinement that exceeded 100 seconds for testing, except
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for d = 10 where already n = 2 results in quite large response times. Algorithm 2 utilises
randomisation for finding lattices of size Mrand as given in the fourth column of Table 4.1.
Here, we set the runtime limit to T = 100 seconds and the fifth column presents the number
of tested random vectors denoted by #z. We discussed generating vectors of Korobov form in
Section 3.2.2. The results of Algorithm 3 are shown in column Mkor. Similar to Algorithm 2,
a randomised version generates the parameter a at random and the found lattice sizes are
reported in column Mkor,rand. Finally, the last column labeled by Mkor,3·2n−2 , shows the
minimal lattice size for the vector z(3 · 2n−2).

In comparison with global search strategies, randomisation for generating the whole vector
z ∈ Zd or the parameter a for vectors of Korobov form seems a reasonable choice. Addition-
ally, one might reduce search time by fixing the parameter to a = 3 · 2n−2 at the cost of a
further increase of the lattice size M .

n |H2
n| Mglob Mrand #z Mkor Mkor,rand #z Mkor,3·2n−2

2 8 8 8 2312909 8 8 2312046 8
3 20 28 28 840019 28 28 769916 28
4 48 93 93 181096 93 93 167254 104
5 112 314 314 27903 314 314 28064 400
6 256 1167 1167 3584 1167 1167 3709 1568
7 576 - 4473 416 4443 4461 449 6208
8 1280 - 17517 47 - 17330 52 24704
9 2816 - 68595 6 - 68332 6 98560

10 6144 - 269712 1 - 272837 1 393728
11 13312 - 1079129 1 - 1067797 1 1573888

n |H3
n| Mglob Mrand #z Mkor Mkor,rand #z Mkor,3·2n−2

2 13 14 14 1160436 14 14 1205784 20
3 38 52 52 232561 52 52 247791 82
4 104 198 198 30465 213 213 30837 247
5 272 - 781 3511 819 819 3679 946
6 688 - 3391 356 3052 3302 380 5145
7 1696 - 14973 35 - 14678 38 16822
8 4096 - 60426 4 - 65724 4 56905
9 9728 - 294533 1 - 243813 1 248611

n |H6
n| Mglob Mrand #z Mkor Mkor,rand #z Mkor,3·2n−2

2 34 50 52 161804 59 59 228449 92
3 138 - 418 9077 351 351 12778 551
4 501 - 2818 452 1736 2072 581 3346
5 1683 - 23040 22 - 17444 28 20486
6 5336 - 159227 2 - 121295 2 138770
7 16172 - 930342 1 - 728406 1 743759

n |H10
n | Mglob Mrand #z Mkor Mkor,rand #z Mkor,3·2n−2

2 76 - 211 22398 197 197 39905 281
3 416 - 3844 434 1661 1661 784 3661
4 1966 - 52364 9 13237 33959 12 35873
5 8378 - 590791 1 - 283487 1 296609

Table 4.1: Interpolation lattices for the dyadic hyperbolic cross Hd
n and spatial dimensions

d = 2, 3, 6, 10.
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4.2 Integration lattices

For the two-dimensional case d = 2, Lemma 3.7 iii) assures an interpolation lattice of size
M = (1 + 3 · 2n−2) · 2n−1 ≈ 3

422n−1 and this cardinality can be further reduced numerically,
cf. Table 4.1. In contrast, we might use that the `1 ball is the smallest “convex” set containing
the hyperbolic cross and employ the minimal integration lattices from [4, Theorems 2.4 and
6.1]. These integrate trigonometric polynomials with total degree ‖k‖1 = |k1|+ |k2| ≤ 2n − 1
exactly and thus allow for the stable reconstruction of f ∈ Π2

n using M = 22n−1 nodes.
More general, we outlined the use of integration lattices for the reconstruction problem in

Section 3.1. Using the inclusions of Lemma 3.6, we compare our numerically found lattices
to lattices which integrate trigonometric polynomials with Fourier coefficients supported on
sufficiently large Zaremba crosses exactly. As usual, we associate to a given integer lattice
X ⊂ Td the Zaremba index and the corresponding refinement

% = %(X ) = min
k∈Zd\0

k·z=0 mod M

(
d∏
s=1

max(1, |ks|)

)
, n(%) =

⌊
log2(%− 1)

2

⌋
+ 1

such that Lemma 3.6 assures that trigonometric polynomials f ∈ Πn(%), will be reconstructed
in a stable way from its samples.

Lattices for the integration of functions of dominating mixed smoothness have been con-
sidered by several authors and the optimality criterion is the quadrature error, cf. [8], or an
estimate on it based on the Zaremba index, cf. [12, 17, 15]. More specific, we consider rank-1
lattices from [12, 17] for d = 3 and rank-1 lattices with generating vectors of Korobov form
[8] for d = 3, 6. Table 4.2 compares these integration lattices and the smallest interpolation
lattices from Section 4.1 with respect to the Zaremba index %, the corresponding refinement
n(%) which assures stable reconstruction by Lemma 3.6, and the largest refinement n which
allows for stable reconstruction by Lemma 3.1. As can readily be seen, the newly found
lattices allow for the stable reconstruction of trigonometric polynomials f ∈ Πd

n while having
only a relatively small Zaremba index.

4.3 Computational times

Subsequently, we compare the CPU timings of the lattice based hyperbolic cross fast Fourier
transform (LHCFFT), see Equation (3.1), the hyperbolic cross fast Fourier transform (HCFFT),
implemented in [5], and the straightforward computation, denoted by hyperbolic cross dis-
crete Fourier transform (HCDFT). The LHCFFT uses the generating vector z(3 ·22n−2) ∈ Zd
and the lattice size M is the minimal possible as partially reported in the last column of
Table 4.1. For fixed spatial dimensions d = 2, 3, 6, 10, Figure 4.1 considers CPU timings
with respect to increasing refinement n. While the asymptotic complexity of the LHCFFT,
Ω(4nn), is larger than for the HCFFT, O(2nnd), we nevertheless gain at least one order of
magnitude in the absolute computational times for problems of moderate size. On the other
hand, we consider fixed refinements n = 2, 3, 4, 5 and increasing spatial dimension in Figure
4.2. Here, the problem size is |Hd

n| = O(dn) and the asymptotic complexities are O(dn+1)
for the HCFFT and O(d2n) for the HCDFT. Regarding the LHCFFT, we cannot offer any
meaningful bound for its complexity but gain at least one order of magnitude in the absolute
computational times as above.
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M % n(%) n

[8]

512 30 3 4
2048 90 4 4
4096 126 4 5
8192 286 5 5

12288 285 5 6
49152 950 5 7
65536 1320 6 7

[12]
2120 165 4 5
3336 258 5 5
5364 404 5 6

[17]

4002 280 5 5
6066 460 5 6

16914 1120 6 6
54525 2904 6 7

109050 5310 7 7
120660 5370 7 8

T
a
b
le

4
.1

198 15 2 4
781 25 3 5

3052 110 4 6
14678 384 5 7
56905 192 4 8

(a) d = 3.

M % n(%) n

[8]

1024 4 1 2
4096 9 2 3

24576 15 2 4
32768 30 3 4
49152 36 3 4
65536 42 3 5

T
a
b
le

4
.1 50 1 0 2

351 1 0 3
1736 6 2 4

17444 12 2 5

(b) d = 6.

Table 4.2: Comparison of interpolation
lattices for the dyadic hyper-
bolic cross Hd

n and integra-
tion lattices for the Zaremba
cross H̃d,1

2n−2.

5 Summary

The evaluation of a d-variate trigonometric polynomial on an integer rank-1 lattice reduces to
a single one dimensional FFT. Provided the integer rank-1 lattice allows for unique and thus
stable reconstruction, for which Theorem 3.5 makes a strong oversampling necessary, the same
holds true for the computation of Fourier coefficients from samples on that lattice. Besides the
availability of highly efficient implementations for the standard FFT, this completely cures the
numerical instabilities [11] of the somewhat more involved standard sparse grid discretisation
[1, 9, 7]. We proposed several algorithms for searching small integer rank-1 lattices, reported
their size in Table 4.1, and showed their use for computing discrete Fourier transforms. In
particular, this lattice based hyperbolic cross fast Fourier transform is available in [5] and
outperforms known algorithms by at least one order of magnitude with respect to CPU
timings for moderate problem sizes. While integer rank-1 lattices prove useful in practice, we
could not prove useful upper bounds for their minimal cardinality.
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with respect to the refinement n, the problem size |Hd

n|, and the used lattice size
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