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ABSTRACT. Recently, fast and reliable algorithms for the evaluation of
spherical harmonic expansions have been developed. The corresponding sam-
pling problem is the computation of Fourier coefficients of a function from
sampled values at scattered nodes. We consider a least squares approximation
and an interpolation of the given data. Our main result is that the rate of
convergence of the two proposed iterative schemes depends only on the mesh
norm and the separation distance of the nodes. In conjunction with the noneq-
uispaced FFT on the sphere, the reconstruction of N2 Fourier coefficients from
M reasonably distributed samples is shown to take O(N2 log2 N + M) floating
point operations. Numerical results support our theoretical findings.

1. Introduction

Motivated by the fact that most data collected over the surface of the earth
is available at scattered nodes only, the least squares approximation and
interpolation of such data has attracted much attention, see e.g. [4, 8,
2]. The most prominent approaches rely on so-called zonal basis function
methods [28] or on finite expansions into spherical harmonics [19, 23]. We
focus on the latter, i.e., the use of spherical polynomials since these allow
for the fast spherical Fourier transforms, see for example [15, 13] and the
references therein.

If we consider the problem of reconstructing a spherical polynomial
of degree N ∈ N0 from sample values, one might set up a linear system of
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equations with M = (N+1)2 interpolation constraints which has to be solved
for the unknown vector of Fourier coefficients f̂ ∈ C(N+1)2 . If the nodes for
interpolation are chosen such that the interpolation problem has always a
unique solution, the sampling set is called a fundamental system. As can
be seen in Figure 1(b), also, in a geometric sense, well distributed nodes on
the sphere can lead to an ill conditioned square spherical Fourier matrix.
Hence, we relax the condition that the number of equations M coincides
with the number of unknowns (N + 1)2. Considering the overdetermined
case M > (N + 1)2 or the underdetermined case M < (N + 1)2 leads to
far better distributed singular values of the system matrix as seen in Figure
1(b).

(a) Generalised spiral nodes [25].
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(b) Singular value distribution.

Figure 1 Distribution of the singular values of the spherical Fourier matrix Y ∈
CM×(N+1)2 with respect to the polynomial degrees N = 0, . . . , 40 for M = 400 gener-
alised spiral nodes.

Our main result is that for given sampling nodes the polynomial de-
gree N can either be chosen small enough with respect to the inverse mesh
norm or large enough with respect to the inverse separation distance of the
sampling set to ensure a well conditioned spherical Fourier matrix. In both
cases, the derived conditions are optimal within a reasonable constant.

In the first part, we consider the overdetermined case M > (N + 1)2,
that is the least squares approximation by spherical polynomials to given
data. The approximation by (univariate) trigonometric polynomials has
been proven to be stable if the polynomial degree is less than the inverse
of the mesh norm of the sampling set in [10]. Subsequently, Feichtinger,
Gröchenig and Strohmer [5] developed the celebrated adaptive weights, con-
jugate gradient, Toeplitz method (ACT) for the fast iterative solution of
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the least squares problem. Moreover, so-called spherical Lp-Marcinkiewicz-
Zygmund inequalities due to Mhaskar, Narcowich, Ward [18] and Filbir,
Themistoclakis [7] yield stable least squares approximation for a quasi-
uniform subset of a dense sampling set. We generalise the idea of adaptive
weights to the sphere and prove the interesting L2-Marcinkiewicz-Zygmund
inequality for dense sampling sets in Theorem 1. The corresponding eigen-
value estimate and thus the rate of convergence of our fast iterative solver
is given in Corollary 1.

On the other hand, we focus on the underdetermined case M < (N +
1)2, i.e., the interpolation of given data. Here, the (univariate) trigonometric
interpolation has been considered in [16]. Applying the smoothness-decay
principle for trigonometric polynomials from [16], we construct strongly lo-
calised zonal polynomials with strictly positive Fourier-Legendre coefficients
in Lemma 7. In conjunction with a refined version of the packing argument
from [20] in Lemma 5, we prove stable interpolation for well separated sam-
pling sets in Theorem 2. The corresponding eigenvalue estimate and thus
the rate of convergence of our fast iterative solver is given in Corollary 2.

The outline of this paper is as follows: Section 2 starts by introducing
the necessary notation including the spaces of spherical harmonics. We
consider the least squares approximation in Section 3. Section 4 discusses
the optimal interpolation problem. Before giving our conclusions, Section 5
presents some numerical experiments.

2. Prerequisites

Let S2 := {x ∈ R3 : ‖x‖2 = 1} be the two-dimensional unit sphere em-
bedded in R3. A point ξ ∈ S2 is identified in spherical coordinates by
ξ = (sinϑ cos ϕ, sinϑ sinϕ, cos ϑ)>, where the angles (ϑ, ϕ) ∈ [0, π]× [−π, π)
are the co-latitude and longitude of that point. The geodesic distance of
ξ, η ∈ S2 is given by

dist (ξ,η) := arccos (η · ξ) .

Obviously, for η, ξ ∈ S2 the Euclidean distance fulfils ‖η − ξ‖2
2 = 2− 2η · ξ

and a node ξ ∼ (ϑ, ϕ) has geodesic distance arccos(e3 · ξ) = ϑ to the north
pole e3 = (0, 0, 1)>.

We measure the “nonuniformity” of a sampling set X := {ξj ∈ S2 : j =
0, . . . ,M − 1}, M ∈ N, by the mesh norm δX and the separation distance
qX , defined by

δX := 2 max
ξ∈S2

min
j=0,...,M−1

dist(ξj , ξ),

qX := min
0≤j<l<M

dist(ξj , ξl).
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The sampling set X is called

• δ-dense for some 0 < δ ≤ 2π, if δX ≤ δ, and
• q-separated for some 0 < q ≤ 2π, if qX ≥ q.

A sequence (XM )M∈N with |XM | = M is called quasi uniform, if δXM
≤

CqXM
with a constant C independent of M .

In analogy to the complex exponentials eikx on the circle, the spherical
harmonics Y n

k are the key to Fourier analysis on the sphere. The Legendre
polynomials Pk : [−1, 1] → R, k ∈ N0, are given by their Rodrigues formula

Pk (t) :=
1

2kk!
dk

dtk
(
t2 − 1

)k
.

They are normalised by Pk(1) = 1 and obey the orthogonality relation∫ 1
−1 Pk(t)Pl(t) dt = 2δk,l/(2k + 1). The closely related associated Legendre

functions Pn
k : [−1, 1] → R, k, n ∈ N0, n ≤ k, are defined by

Pn
k (t) :=

√
(k − n)!
(k + n)!

(
1− t2

)n
2

dn

dtn
Pk (t) .

The spherical harmonics Y n
k : S2 → C of degree k ∈ N0 and order

n ∈ Z, |n| ≤ k, are the functions

Y n
k (ξ) = Y n

k (ϑ, ϕ) :=

√
2k + 1

4π
P
|n|
k (cos ϑ)einϕ .

These functions form an orthonormal basis of L2(S2), i.e.,∫
S2

Y n
k (ξ) Y m

l (ξ) dµ(ξ) =
∫ 2π

0

∫ π

0
Y n

k (ϑ, ϕ) Y m
l (ϑ, ϕ) sinϑ dϑdϕ = δk,lδn,m ,

moreover the addition theorem
k∑

n=−k

Y n
k (η)Y n

k (ξ) =
2k + 1

4π
Pk (η · ξ) (2.1)

is valid. We say that f is a spherical polynomial of degree N if f =∑N
k=0

∑k
n=−k f̂n

k Y n
k . The space of spherical polynomials of degree at most

N is denoted by ΠN (S2) and has dimension (N +1)2. The spherical Fourier
matrix is given by

Y :=
(
Y n

k

(
ξj

))
j=0,...,M−1;k=0,...,N,|n|≤k

∈ CM×(N+1)2 .

The inverse spherical Fourier transform is the construction of a spheri-
cal polynomial f of predetermined degree N from given data points (ξj , yj) ∈
S2 × C, j = 0, . . . ,M − 1, such that the approximate identity

f(ξj) ≈ yj (2.2)
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is fulfilled. Thus, it is equivalent to solve the linear system of equations
Y f̂ ≈ y = (yj)j=0,...,M−1 ∈ CM for the sought vector of Fourier coefficients

f̂ = (f̂n
k )k=0,...,N,|n|≤k ∈ C(N+1)2 of the approximating polynomial. In a

sense, it is the inverse problem to the matrix vector multiplication f = Y f̂
which corresponds to evaluate a spherical polynomial on the sampling set.
An efficient realisation of this matrix vector multiplication is known as fast
spherical Fourier transform at arbitrary nodes, and has been proposed in
[15, 13].

In what follows, we study sufficient conditions for the matrix Y to
have full rank, as well as condition numbers for the overdetermined case
M > (N + 1)2 and the underdetermined case M < (N + 1)2, respectively.

3. Least squares approximation

For M > (N + 1)2, the linear system (2.2) is over-determined. Hence,
in general the given data y ∈ CM can only be approximated up to some
residual r := y − Y f̂ . In order to compensate for clusters in the sampling
set X , it is also useful to incorporate weights wj > 0 into our problem, i.e.,
to consider the weighted least squares problem

‖y − Y f̂‖2
W =

M−1∑
j=0

wj |yj − f(ξj)|2
f̂→ min, (3.1)

where W := diag(wj)j=0,...,M−1 ∈ RM×M .

Lemma 1. The least squares problem (3.1) is equivalent to the normal
equation of first kind

Y àWY f̂ = Y àWy. (3.2)

Proof. The assertion is due to [1, Thm. 1.1.2] for the matrix W 1/2Y .

3.1 Voronoi partition of δ-dense nodes

In this subsection, we briefly survey Voronoi diagrams on the sphere S2

and define the corresponding weights wj , j = 0, . . . ,M − 1, which prove
usefull in (3.1). For every node ξj in the sampling set X ⊂ S2, the set
of all points ξ ∈ S2 for which ξj is closest of all nodes in X , with respect
to the geodesic distance, is called the Voronoi cell of ξj . The collection of
all Voronoi cells tessellates the whole sphere and is denoted the Voronoi
partition corresponding to the set X . More formally, we have the following
definition.

Definition 1. Let X = {ξj ∈ S2 : j = 0, . . . ,M − 1} be a sampling
set. Then, the Voronoi partition R := {Ωj ⊂ S2 : j = 0, . . . ,M − 1},
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the corresponding Voronoi cells Ωj and their parameterisations Ω̃j , their
characteristic functions χj , their weights wj , and the partition norm ‖R‖
are given by

Ωj :=
{

ξ ∈ S2 : dist
(
ξ, ξj

)
≤ min

l=0,...,M−1
dist (ξ, ξl)

}
,

Ω̃j :=
{

(ϑ, ϕ)> ∈ [0, π]× [−π, π) : (sin ϑ cos ϕ, sinϑ sinϕ, cos ϑ)> ∈ Ωj

}
,

χj (ξ) :=

{
1 if ξ ∈ Ωj ,

0 otherwise,

wj :=
∫

S2

χj(ξ)dµ (ξ) =
∫

Ωj

dµ (ξ) =
∫

Ω̃j

sinϑdϑdϕ,

‖R‖ := max
j=0,...,M−1

max
ξ,η∈Ωj

dist (ξ,η) .

Obviously, the partition norm of the Voronoi partition obeys

δX /2 ≤ ‖R‖ ≤ δX . (3.3)

Remark 1. Figure 3.1(a) shows the most common example of Voronoi
cells for points in the plane. Restricting the Euclidean Voronoi partition
of R3 for a set on points X on the sphere to the sphere itself, yields ex-
actly the Voronoi partition of S2 as defined above. An example is given
in Figure 3.1(b). However, from a computational point of view, the three-
dimensional procedure is not favourable since algorithms for computing the
three-dimensional Voronoi partition can have quadratic complexity in the
number of nodes M . In [24], Renka describes an algorithm which for M
points on the sphere S2 computes all Voronoi cells with O (M log M) arith-
metic operations. For our computations, we used a C translation of Renka’s
original Fortran 77 library to compute the Voronoi cells Ωj and weights wj .

3.2 Spherical Marcinkiewicz-Zygmund inequalities

In order to estimate the convergence rate of our iterative solver we use
a spherical Marcinkiewicz-Zygmund (MZ) inequality for L2. In general,
MZ-inequalities provide an equivalence between the continuous and discrete
Lp-norms of polynomials and were first proven on the sphere by Mhaskar,
Narcowich and Ward [18]. Recently, Filbir and Themistoclakis [7] used a
particular de la Vallée Poussin kernel [6] in order to give a more concrete esti-
mate in the L1 case. Both versions of the Lp MZ-inequality were formulated
for a quasi uniform subset of a dense sampling set. The existence of such a
“compatible decomposition” was proven in [18]. However, its construction
is somewhat lengthy and, more severe, part of the sampling information is
discarded during the process.
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(a) Voronoi cells for points in the plane. (b) Voronoi cells for points on the
sphere.

Figure 2 Voronoi cells in the plane and on the sphere.

We follow the lines of [18, 7] but improve previous estimates for the
two dimensional unit sphere S2. In particular, we use the Voronoi partition
of the sphere with respect to an arbitrary given sampling set.

The following technical Lemma 2 on a spherical de la Vallée Poussin
kernel is due to [7]. In Lemma 3, we use the techniques of [18, 7] to estimate
an L1 variation between the kernel and its sampled version. Subsequently,
we present in Theorem 1 an explicit MZ-inequality for L2 which relies only
on the degree N of the spherical polynomial and the mesh norm δ of the
sampling set.

Lemma 2. (Section 3 in [7])
Let N ∈ N and define

n :=

{
3N/2 N even,

(3N − 1)/2 otherwise,
m :=

{
N/2 N even,

(N − 1)/2 otherwise.

Moreover, let vN : [−1, 1] → R be given by

vN (t) :=
4

(m + 1)2
Dn (t) Dm (t) with DN (t) :=

N∑
k=0

2k + 1
2

Pk (t) .

Then we have the following properties:

1. ((3.12) in [7]) vN is a polynomial of degree at most 2N .
2. (Proposition 3.4 in [7]) vN is a reproducing kernel for spherical poly-

nomials f of degree N , i.e., f ∈ ΠN (S2) obeys

f (ξ) =
∫

S2

f (η) vN (ξ · η) dµ (η) .
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3. ((2.18) and (3.10) in [7] improving [7, Theorem 3.3] slightly) vN is
uniformly bounded by

‖vN‖L∞
[−1,1]

= max
t∈[−1,1]

vN (t) ≤
9
(
N + 2

3

)
16π

≤ N2

2
.

4. ((3.13) in [7]) vN has bounded L1-norm

sup
N∈N

‖vN‖L1
[−1,1]

= sup
N∈N

1∫
−1

|vN (t)|dt ≤ 3
2π

.

Lemma 3. Let N,M ∈ N, vN be the kernel in Lemma 2, and X =
{ξj ∈ S2 : j = 0, . . . ,M − 1} be a sampling set on the sphere with Voronoi
partition R, see Definition 1. Then we have for arbitrary fixed η ∈ S2 and
K :=

⌊
π
‖R‖

⌋
≥ 479N the inequality

M−1∑
j=0

∫
Ωj

∣∣vN (ξ · η)− vN

(
ξj · η

)∣∣ dµ (ξ) ≤ 479
N

K
.

Proof. We use spherical coordinates with respect to the northpole η and
set θ := arccos(ξ · η) and ρj := arccos(ξj · η). Moreover, let θ±j denote the
lowest and the highest values for the coordinate θ in the region Ω̃j , i.e.,

θ−j := min
(θ,ϕ)∈Ω̃j

θ, θ+
j := max

(θ,ϕ)∈Ω̃j

θ.

Of course, θ−j ≤ ρj , θ ≤ θ+
j and hence we estimate for j = 0, . . . ,M − 1 the

integral∫
Ωj

∣∣vN (ξ · η)− vN

(
ξj · η

)∣∣ dµ (ξ) =
∫

Ω̃j

|vN (cos θ)− vN (cos ρj)| sin θ dθ dϕ

≤
∫

Ω̃j

∫ θ

ρj

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ dt sin θ dθ dϕ

≤
∫ θ+

j

θ−j

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ dt

∫
Ω̃j

sin θ dθ dϕ .

(3.4)

The next step is to cover the sphere with overlapping bands, see e.g. [18,
Proposition 3.3], we define

Jk := [(k − 1)π/K, kπ/K] , k = 1, . . . K,

Bk :=
{
ξ ∈ S2 : θ ∈ Jk ∪ Jk+1

}
, k = 1, . . . K − 1,

J̃k := Jk ∪ Jk+1, k = 1, . . . K − 1.
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Note that π
K ≥ ‖R‖ ≥ θ+

j − θ−j and thus if θ−j ∈ Jk then [θ−j , θ+
j ] ⊂ J̃k and

Ωj ⊂ Bk. Due to ∪K−1
k=1 Bk = S2, we proceed with (3.4) by the following

reordering of the sum over the nodes

M−1∑
j=0

∫ θ+
j

θ−j

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ dt

∫
Ω̃j

sin θ dθ dϕ

≤
K−1∑
k=1

∑
Ωj⊂Bk

∫ θ+
j

θ−j

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ dt

∫
Ωj

dµ (ξ)

≤
K−1∑
k=1

∫
J̃k

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ dt

∑
Ωj⊂Bk

∫
Ωj

dµ (ξ)

≤
K−1∑
k=1

∫
J̃k

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ dt · 2π

∫
J̃k

sin θdθ, (3.5)

where we have used that the Voronoi cells Ωj ⊂ Bk share no interior points
with each other. In order to avoid the introduction of the doubling weights
as in [17, 18], we estimate the right hand side of (3.5) with a technique
suggested in [7, Theorem 4.2]. We distinguish between bands Bk near the
north/south pole and bands Bk well separated from the poles. We use the
fact that away from the poles, i.e., for t, θ ∈ J̃k we have

sin θ = sin((θ − t) + t) ≤ sin(θ − t) + sin(t) ≤ 2 sin t, k = 3, 4, . . . ,K − 3 .

Using the product rule

∣∣∣∣( d
dt

vN (cos t)
)

sin t

∣∣∣∣ ≤ ∣∣∣∣ d
dt

vN (cos t) sin t

∣∣∣∣+ |vN (cos t) cos(t)| ,

we estimate

2π

K−3∑
k=3

∫
J̃k

∫
J̃k

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ sin θ dt dθ ≤ 8π2

K

K−3∑
k=3

∫
J̃k

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ sin t dt

≤ 16π2

K

(∫ π

0

∣∣∣∣ d
dt

[vN (cos t) sin t]
∣∣∣∣ dt +

∫ (K−2)π
K

2π
K

|vN (cos t) cos t|dt

)
. (3.6)

By assumption, we have 2π
K ≤ C

N for C ≥ 2π/479. Using the fact cos t
sin t ≤

1
t
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for t ∈ (0, π/2] and Lemma 2 yields for the last integral

(K−2)π
K∫

2π
K

|vN (cos t) cos t |dt

≤


C
N∫

2π
K

+

(K−2)π
K∫

π−C
N

 |vN (cos t) |dt +

π−C
N∫

C
N

|vN (cos t) cos t |dt

≤


C
N∫

0

+

π∫
π−C

N

 |vN (cos t) |dt +

π−C
N∫

C
N

∣∣∣∣vN (cos t) sin t
cos t

sin t

∣∣∣∣ dt

≤ 2C

N
max
t∈[0,π]

|vN (cos t)|+ N

C

π∫
0

|vN (cos t) sin(t)|dt ≤ 4N√
2π

by choosing C = 1√
2π

. In conjunction with the Bernstein inequality for the
first summand in (3.6), N ≥ 1, and the fact that vN has bounded L1-norm,
cf. Lemma 2, i.e.,∫ π

0

∣∣∣∣ d
dt

[vN (cos t) sin t]
∣∣∣∣ dt ≤ (2N + 1)

∫ π

0
|vN (cos t) sin t|dt

≤ 3(2N + 1)
2π

≤ 9N

2π

we conclude for the part away from the poles

2π

K−3∑
k=3

∫
J̃k

∫
J̃k

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ sin θ dt dθ ≤ 72πN

K
+

64π2N√
2πK

≤ 478.2
N

K
.

(3.7)
Near the poles, i.e., for ÎK := {1, 2,K − 2,K − 1}, we proceed in (3.5) with
sin θ ≤ θ and maxt∈[0,π] | d

dtvN (cos t)| ≤ 2N‖vN‖L∞
[−1,1]

≤ N3, cf. Lemma 2,
by

2π
∑
k∈ÎK

∫
J̃k

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ dt

∫
J̃k

sin θ dθ

≤ 16π2

K
max
t∈[0,π]

∣∣∣∣ d
dt

vN (cos t)
∣∣∣∣ · max

k=1,2

∫
J̃k

θ dθ ≤ 48π4N3

K3
≤ 0.03

N

K
, (3.8)

where the last estimate follows from N2/K2 ≤ 479−2. In summary, we
estimate the left hand side of (3.5) by using (3.7) and (3.8) to obtain the
assertion.
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Theorem 1. Let a δ-dense sampling set X ⊂ S2 of cardinality M ∈ N be
given. Moreover let for N ∈ N with 154Nδ < 1 and W = diag(wj)j=0,...,M−1,
with Voronoi weights wj, cf. Definition 1 be given. Then we have for arbi-
trary spherical polynomials f ∈ ΠN (S2), for the vector f =

(
f(ξj)

)
j=0,...,M−1

the weighted norm estimate

(1− 154Nδ) ‖f‖2
L2 ≤ ‖f‖2

W ≤ (1 + 154Nδ) ‖f‖2
L2 .

Proof. We follow the lines of [18, 7] closely and use the Markov inequality

|f (ξ)− f (η)| ≤ Ndist (ξ,η) ‖f‖L∞ , ξ,η ∈ S2,

from [11]. Thus, for arbitrary ξ ∈ S2 and its closest sampling node with
index j = arg min0≤l<M dist (ξ, ξl), we have

|f (ξ)| ≤
∣∣f (ξ)− f

(
ξj

)∣∣+ ∣∣f (ξj

)∣∣ ≤ Nδ

2
‖f‖L∞ + max

0≤j<M

∣∣f (ξj

)∣∣ .
Taking the maximum over ξ ∈ S2 we conclude the L∞-Marcinkiewicz-
Zygmund inequality

(1− Nδ

2
) ‖f‖L∞ ≤ max

0≤j<M

∣∣f (ξj

)∣∣ ≤ (1 +
Nδ

2
) ‖f‖L∞ , (3.9)

where the right hand side is of course trivially fulfilled.
On the other hand, we have∣∣∣∣∣∣ ‖f‖L1 −

M−1∑
j=0

wj

∣∣f (ξj

)∣∣ ∣∣∣∣∣∣ =
∣∣∣∣∣∣‖f‖L1 −

∥∥∥∥∥∥
M−1∑
j=0

f
(
ξj

)
χj

∥∥∥∥∥∥
L1

∣∣∣∣∣∣
≤

∥∥∥∥∥∥f −
M−1∑
j=0

f
(
ξj

)
χj

∥∥∥∥∥∥
L1

.

Using the reproducing property of vN as first suggested in [7], one obtains∥∥∥∥∥∥f −
M−1∑
j=0

f
(
ξj

)
χj

∥∥∥∥∥∥
L1

=
M−1∑
j=0

∫
Ωj

∣∣f (ξ)− f
(
ξj

)∣∣ dµ (ξ)

=
M−1∑
j=0

∫
Ωj

∣∣∣∣∫
S2

(
vN (ξ · η)− vN

(
ξj · η

))
f (η) dµ (η)

∣∣∣∣ dµ (ξ)

≤
M−1∑
j=0

∫
Ωj

∫
S2

∣∣vN (ξ · η)− vN

(
ξj · η

)∣∣ |f (η)|dµ (η) dµ (ξ)

≤ ‖f‖L1 sup
η∈S2

M−1∑
j=0

∫
Ωj

∣∣vN (ξ · η)− vN

(
ξj · η

)∣∣ dµ (ξ) .
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In conjunction with Lemma 3 and the straightforward estimate

479N

K
=

479N

bπ/‖R‖c
≤ 479N‖R‖

π − ‖R‖
≤ 480

π
Nδ ≤ 153Nδ,

we obtain the explicit L1-Marcinkiewicz-Zygmund inequality

(1− 153Nδ) ‖f‖L1 ≤
M−1∑
j=0

wj

∣∣f (ξj

)∣∣ ≤ (1 + 153Nδ) ‖f‖L1 . (3.10)

Now, let the sampling operator S : ΠN (S2) → ΠN (S2)|X , f 7→ (f(ξj))0≤j<M ,
map each spherical polynomial f of degree at most N to its sample values
f(ξj), j = 0, . . . ,M − 1. We proceed by the Riesz-Thorin interpolation
theorem [3, p. 32, Thm. 4.3] to bound the operator norm of S, i.e., in our
case this reads together with (3.9) and (3.10) as

sup
f∈ΠN (S2), f 6=0

M−1∑
j=0

wj

∣∣f (ξj

)∣∣2/‖f‖2
L2

≤ sup
f∈ΠN (S2), f 6=0

M−1∑
j=0

wj

∣∣f (ξj

)∣∣/‖f‖L1 × sup
f∈ΠN (S2), f 6=0

max
0≤j<M

∣∣f (ξj

)∣∣/‖f‖L∞

≤ (1 + 153Nδ)
(

1 +
1
2
Nδ

)
≤ 1 + 154Nδ.

Applying the Riesz-Thorin theorem to the inverse mapping S−1, we obtain

sup
f∈ΠN (S2), f 6=0

M−1∑
j=0

wj

∣∣f (ξj

)∣∣2/‖f‖2
L2 ≥ 1− 154Nδ,

which in turn gives the assertion. Note, that this improves [18, Thm. 3.1]
and [7, Thm. 4.2] by using the interpolation argument more directly.

3.3 Eigenvalue estimate

In this subsection, we summarise the above results in order to answer the
question under which condition the least squares problems (3.1) or the equiv-
alent normal equations (3.2) are stable.

Corollary 1. Let a δ-dense sampling set X ⊂ S2 of cardinality M ∈ N
be given and W = diag((wj)j=0,...,M−1) denote the diagonal matrix with
Voronoi weights wj, cf. Definition 1. Then for N ∈ N, 154Nδ < 1, the
matrix Y àWY in the normal equation of first kind (3.2) has bounded eigen-
values

0 < 1− 154Nδ ≤ λmin

(
Y àWY

)
≤ 1 ≤ λmax

(
Y àWY

)
≤ 1 + 154Nδ.

(3.11)
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In particular, under the above conditions, the matrix Y has full (column)
rank (N + 1)2. Moreover, the conjugate gradient method applied to (3.2)
converges linearly, i.e.,

‖rl‖W ≤ 2 (154Nδ)l ‖r0‖W (3.12)

with the initial residual r0 := y and the residual rl := Y f̂ l − y of the l-th
iterate f̂ l.

Proof. Due to f = Y f̂ and Parseval’s identity ‖f̂‖2 = ‖f‖L2 , Theorem 1
indeed shows the eigenvalue estimate

1− 154Nδ ≤ f̂
à
Y àWY f̂

f̂
à
f

≤ 1 + 154Nδ.

Thus, the matrix Y àWY possesses a bounded condition number

cond(Y àWY ) ≤ 1 + 154Nδ

1− 154Nδ
.

Applying the standard estimate for the convergence of the conjugate gradi-
ent method, see e.g. [1, p. 289], yields the assertion (3.12).

We solve problem (3.1) by a factorised variant of conjugate gradients
(CGNR, N for ”Normal equation” and R for ”Residual minimisation”),
where we use the nonequispaced fast spherical Fourier transform for fast
matrix vector multiplications with Y and its adjoint Y à, see [15, 13] for
details. Note that for 154Nδ < 1 a constant number of iterations suffices to
decrease the residual to a certain fraction, i.e., the total number of floating
point operations is bounded by the complexity O(N2 log2 N +M) of the fast
spherical Fourier transform.

Remark 2. The condition on the mesh norm δ is optimal up to a constant.
More formally, [26, Theorem 5.2] states the following necessary condition on
the sampling set: If Y àWY = I with M = (N + 1)2 and strictly positive
weights wj > 0, then Nδ . 9.62. In contrast, we gave the sufficient condition
on the sampling set: If Nδ ≤ 1/154, then the Voronoi weights wj > 0 yield
a well conditioned matrix Y àWY .

4. Optimal interpolation

We define for given sample values yj ∈ C, j = 0, . . . ,M − 1, and given
weights ŵk > 0, k = 0, . . . , N , the optimal interpolation problem

min
f̂∈C(N+1)2

N∑
k=0

k∑
n=−k

∣∣∣f̂n
k

∣∣∣2
ŵk

subject to
N∑

k=0

k∑
n=−k

f̂n
k Y n

k

(
ξj

)
= yj . (4.1)
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Lemma 4. The optimal interpolation problem (4.1) is equivalent to the
normal equations of second kind

Y ŴY àf̃ = y, f̂ = ŴY àf̃ , (4.2)

where the weighting matrix is given by Ŵ := diag(w̃) ∈ R(N+1)2×(N+1)2 for
the vector w̃ = (w̃n

k )k=0,...,N,|n|≤k with w̃n
k = ŵk, k = 0, . . . , N, |n| ≤ k.

Moreover, with the help of the polynomial kernel KN : [−1, 1] → C and
its associated matrix

KN (t) :=
N∑

k=0

2k + 1
4π

ŵkPk (t) , K :=
(
KN

(
ξj · ξl

))
j,l=0,...,M−1

(4.3)

we have K = Y ŴY à.

Proof. The first assertion is due to [1, Thm. 1.1.2] for the matrix Y Ŵ 1/2.
The second assertion follows from the addition theorem (2.1).

4.1 Ring partition of q-separated nodes

In this subsection, we define a partitioning of the sampling nodes into “rings”
with increasing distance from the node ξ0, which is assumed without loss of
generality to be the north pole ξ0 = (0, 0, 1)>.

Definition 2. For a separation distance q ≤ π, 0 ≤ m < bπq−1c, and the
north pole ξ0 we define the sets

Sq,m :=
{
ξ ∈ S2 : mq ≤ arccos (ξ0 · ξ) < (m + 1) q

}
and

Sq,bπq−1c :=
{
ξ ∈ S2 :

⌊
πq−1

⌋
q ≤ arccos (ξ0 · ξ) ≤ π

}
.

Their restrictions to the set of sampling nodes is SX ,q,m := Sq,m ∩ X .The
cardinality of these sets will be denoted by |SX ,q,m|.

We estimate the cardinality of |SX ,q,m|, i.e., we prove how many q-
separated nodes can be placed in a certain distance to the north pole ξ0.
In contrast to [20, Thm. 2.3], our estimate relies solely on the index m but
no longer on the separation distance q. Figure 4.1 illustrates the basic idea
behind the proof of Lemma 5.

Lemma 5. Let a set of sampling nodes on S2 be q-separated, then the sets
SX ,q,m obey for m = 1, . . . , bπq−1c the bound

|SX ,q,m| ≤ 25m.

Proof. We use a packing argument from [20, Thm. 2.3] which states
that for each node in SX ,q,m the centred cap around it of colatitude q/2 is
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Figure 3 The set SX ,q,m, the ring Sq,m (dashed), the larger ring S̃q,m, and a spherical
cap of colatitude q/2 centred at one node for generalised spiral nodes.

contained in the larger ring S̃q,m = Sq,m− 1
2
∪ Sq,m+ 1

2
and has no interior

points common with the cap of another node. Hence, we estimate for m =
1, . . . , bπq−1c − 2

|SX ,q,m| ≤

∫
S̃q,m

dµ (ξ)∫
Sq/2,0

dµ (ξ)
=

∫ (m+ 3
2)q

(m− 1
2)q

sin θdθ∫ q
2

0 sin θdθ
=

cos
(

(2m−1)q
2

)
− cos

(
(2m+3)q

2

)
1− cos q

2

.

Using an identity for the de la Vallée Poussin kernel, see e.g. [22, equation
(3.4) and (3.5)], we calculate further

|SX ,q,m| ≤
cos
(
(2m− 1) q

2

)
− cos

(
(2m + 3) q

2

)
1− cos q

2

=
sin
(
(2m + 1) q

2

)
sin
(
2 q

2

)
sin2 q

4

= 4 + 8
2m−1∑
l=1

cos lq
2 + 6 cos 2mq

2 + 4 cos (2m+1)q
2 + 2 cos (2m+2)q

2

≤ 8 (2m + 1) .

In conjunction with a similar argument, starting from the south pole, see
also the first estimate in [20, inequality (2.32)], i.e.,

|SX ,q,bπq−1c−1 ∪ SX ,q,bπq−1c| ≤
1− cos

(
5 q

2

)
1− cos

( q
2

) ≤ 25,

we obtain the assertion.

4.2 Localised kernels

Localised kernels and well separated sampling sets yield stable interpola-
tion for polynomials on the sphere. We construct localised polynomials on
the sphere with the help of localised trigonometric polynomials. This con-
struction was first suggested in [14]. We need the following lemma for the
connection coefficients between the Chebyshev and Legendre polynomials.
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Lemma 6. For k, l ∈ N0 and the Chebyshev polynomials Tl : [−1, 1] →
R, z 7→ Tl(z) := cos(l arccos z) the matrix P := (Pk,l)k,l∈N0 with entries

Pk,l :=
∫ 1

−1
Pk (z) Tl (z) dz (4.4)

fulfils
Pk,l = 2 if k = l = 0,
Pk,l > 0 if k = l,
Pk,l < 0 if l > k and (−1)k+l = 1,
Pk,l = 0 otherwise.

Moreover, the identity
∞∑

l=k

(2− δl,0) Pk,l = 0 (4.5)

is satisfied.

Proof. The matrix entries obey the explicit form, cf. [27, p. 99],

P2k,2l =
−2
∏k−1

s=0

(
(2l)2 − (2s)2

)
∏k

s=0

(
(2l)2 − (2s + 1)2

) , (4.6)

P2k+1,2l+1 =
−2
∏k−1

s=0

(
(2l + 1)2 − (2s + 1)2

)
∏k

s=0

(
(2l + 1)2 − (2s + 2)2

)
for l ≥ k ≥ 0. We comment on the zero entries of the matrix P . For the
lower triangular part, i.e., l < k, the k-th Legendre polynomial is orthogonal
to all polynomials of degree at most l; furthermore, T2k, P2k and T2k+1, P2k+1

are even and odd, respectively. Moreover, the only negative factor in the
proposed identity appears for s = k = l and thus the diagonal entries of P
are positive, whereas the non-zeros of the upper triangular part are negative.
The last assertion, i.e., the diagonal dominance of P and thus the strict
diagonal dominance of its finite sections is due to

∞∑
l=0

P0,2l =
∞∑
l=0

∫ 1

−1
T2l (x) dx =

∞∑
l=0

2
1− (2l)2

= 1

and the following calculations, where we restrict to the even case (4.6). For
notational convenience, let pk,l := P2k,2l, k, l ∈ N. We prove for k ∈ N and
by induction over N ≥ k that

N−1+k∑
l=k

pk,l =
1

2N − 1

2k−1∏
r=0

N + r

N + r + 1
2

. (4.7)
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For N = 1 and k = 1 equation (4.7) is fulfilled and due to

pk+1,k+1

pk,k
=

∏k
s=0 (k + 1− s) (k + 1 + s) ·

∏k
s=0

(
k − s− 1

2

) (
k + s + 1

2

)∏k+1
s=0

(
k + 1− s− 1

2

) (
k + 1 + s + 1

2

)
·
∏k−1

s=0 (k − s) (k + s)

=
(2k + 1) (2k + 2)(
2k + 3

2

) (
2k + 5

2

)
this extends to all N = k. We proceed for fixed k by

N+k∑
l=k

pk,l = pk,N+k +
N−1+k∑

l=k

pk,l

= −
2
∏k−1

s=0

(
4 (N + k)2 − 4s2

)
∏k

s=0

(
4 (N + k)2 − (2s + 1)2

) +
N−1+k∑

l=k

pk,l

= −
∏k−1

s=0 (N + k − s) (N + k + s)

2
∏k

s=0

(
N + k − s− 1

2

) (
N + k + s + 1

2

) +
N−1+k∑

l=k

pk,l

and apply the induction hypothesis (4.7), i.e.,

N+k∑
l=k

pk,l =
1

2N − 1

(
2k−1∏
r=0

N + r

N + r + 1
2

)(
1− N + k

N
(
N + 2k + 1

2

))

=
N2
(
N + 2k + 1

2

)
−N (N + k)

(2N − 1)
(
N + 1

2

)
N
(
N + 2k + 1

2

) (2k−2∏
r=0

N + 1 + r

N + 1 + r + 1
2

)

=
1

2N + 1

2k−1∏
r=0

N + 1 + r

N + 1 + r + 1
2

.

We conclude from (4.7) that the N -th partial sum of each even numbered
row of P decays like O

(
N−1

)
. The same technique yields this property for

all odd numbered rows and thus (4.5) follows.

Definition 3. Let the normalised B-spline of order β ∈ N be defined by
gβ : [−1

2 , 1
2 ] → R, gβ(z) := βNβ(βz + β

2 ), with the cardinal B-spline given
by

Nβ+1 (z) =
∫ z

z−1
Nβ (τ) dτ, β ∈ N, N1 (z) =

{
1 0 < z < 1,

0 otherwise.

Moreover, let for N ∈ N the B-spline kernel Bβ,N : [−1, 1] → R be given by

Bβ,N (t) :=
1

‖gβ‖1,N

N∑
l=0

(2− δl,0) gβ

(
l

2 (N + 1)

)
Tl (t) , (4.8)
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where ‖ · ‖1,N denotes the discrete norm

‖gβ‖1,N :=
N∑

l=−N

gβ

(
l

2 (N + 1)

)
.

Lemma 7. The B-spline kernel Bβ,N obeys for N ≥ β − 1 and t ∈ [−1, 1)
the localisation property

|Bβ,N (t)| ≤ cβ |(N + 1) arccos (t)|−β , cβ :=

(
2β − 1

)
ζ (β) ββ

2β−1 − ζ (β) π−β
. (4.9)

Moreover, it is normalised by Bβ,N (1) = 1 and can be represented as

Bβ,N (t) =
N∑

k=0

2k + 1
4π

ŵkPk (t)

with positive Fourier-Legendre coefficients

ŵk = 2π

∫ 1

−1
Pk (z) Bβ,N (z) dz, k = 0, . . . , N.

Proof. First note that the B-splines are even functions and hence, the
Chebyshev series in (4.8) can be rewritten with t = cos(2πx) as

N∑
l=0

(2− δl,0) gβ

(
l

2(N+1)

)
Tl (t) =

N∑
l=0

(2− δl,0) gβ

(
l

2(N+1)

)
cos (2πlx)

=
N∑

k=−N

gβ

(
k

2(N+1)

)
e−2πikx.

Setting x = 0 yields the normalisation Bβ,N (1) = 1.
Moreover, the smoothness-decay principle in [16, Lemma 3.2] states

the localisation of a trigonometric polynomial with “smooth” Fourier coef-
ficients. In particular, it has been proven that∣∣∣∣∣

N∑
k=−N

gβ

(
k

2 (N + 1)

)
e−2πikx

∣∣∣∣∣ ≤
(
2β − 1

)
ζ (β)

∣∣∣g(β−1)
β

∣∣∣
V

(4 (N + 1))β−1 |2πx|β
, (4.10)

‖gβ‖1,N ≥ 2 (N + 1)
(
1− 2ζ (β) (4πβ)−β

∣∣∣g(β−1)
β

∣∣∣
V

)
, (4.11)

where |g(β−1)
β |V denotes the total variation of the (β−1)-th derivative of gβ .

Using N ′
β(z) = Nβ−1(z)−Nβ−1(z − 1), we conclude

∣∣∣g(β−1)
β

∣∣∣
V

= ββ
∣∣∣N (β−1)

β

∣∣∣
V

= ββ

∣∣∣∣∣
β−1∑
τ=0

(−1)τ

(
β − 1

τ

)
N1 (· − τ)

∣∣∣∣∣
V

= (2β)β .

(4.12)
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Combining (4.10)–(4.12) yields (4.9).
It remains to prove that every B-spline kernel Bβ,N possesses an expan-

sion into Legendre polynomials with positive coefficients. We use the orthog-
onality of the Legendre polynomials and the linearity of the corresponding
inner product and definition (4.4) and (4.8) to write the Fourier-Legendre
coefficients as

ŵk = 2π

∫ 1

−1
Pk (z) Bβ,N (z) dz

=
2π

‖gβ‖1,N

N∑
l=k

Pk,l · (2− δl,0) gβ

(
l

2 (N + 1)

)
. (4.13)

Due to Lemma 6 and the fact that the weight function gβ is positive and
nonincreasing for 0 ≤ z ≤ 1

2 , we estimate

ŵk ≥
2πg (0)
‖gβ‖1,N

N∑
l=k

Pk,l · (2− δl,0) > 0,

where the positivity is due to the strict diagonal dominance of every finite
section of the matrix P as shown in Lemma 6.

Note, that in contrast to [20] the order β of the B-spline and the de-
gree N ∈ N of the kernel Bβ,N are independent of each other. We shortly
comment on two well known special cases. The case β = 1, i.e., the “top-hat
function” g1(z) = 1 for |z| < 1

2 and g1(z) = 0 elsewhere, leads to the well
known Dirichlet kernel B1,N (cos x) = 1

2N+1

∑N
k=−N e+2πikx. Analogously,

β = 2, i.e., the “hat function” g2(z) = 2 − 4|z| for |z| ≤ 1
2 and g2(z) = 0

elsewhere, leads to the Fejér kernel.

4.3 Eigenvalue estimate

In this subsection, we answer the question under which condition the optimal
interpolation problems (4.1) or the equivalent normal equations (4.2) are
stable.

Theorem 2. Let a q-separated sampling set X ⊂ S2 of cardinality M ∈ N
and with q ≤ π be given. Then for N, β ∈ N, N ≥ β − 1 ≥ 2, the kernel
matrix

K = (Kj,l)j,l=0,...,M−1 , Kj,l = Bβ,N (ξj · ξl),

see also (4.3) and Definition 3, has bounded eigenvalues

|λ(K)− 1| ≤
25cβζ (β − 1)

((N + 1) q)β
,

where cβ is given in (4.9).
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Proof. We apply the Gershgorin circle theorem where we assume without
loss of generality that ξ0 = (0, 0, 1)>. In conjunction with the partitioning
in Definition 2, Lemma 5, and the localisation property in Lemma 7, we
obtain

|λ(K)− 1| ≤
M−1∑
j=1

∣∣Bβ,N

(
ξ0 · ξj

)∣∣
≤

bπq−1c∑
m=1

|SX ,q,m| max
ξ∈Sq,m

|Bβ,N (ξ0 · ξ)|

≤
bπq−1c∑
m=1

|SX ,q,m| cβ ((N + 1) mq)−β

≤ 25cβζ (β − 1) ((N + 1) q)−β .

Corollary 2. Let a q-separated sampling set X ⊂ S2 of cardinality M ∈ N
and with q ≤ π be given. Moreover, let N ∈ N, (N +1)q > 11.2, and weights
be given by the sampled cubic B-Spline, i.e.,

ŵk =
2π

‖g4‖1,N

N∑
l=k

Pk,l · (2− δl,0) g4

(
l

2 (N + 1)

)
.

Then we have

0 < 1−
(

11.2
(N+1)q

)4
≤ λmin(Y ŴY à) ≤ 1 ≤ λmax(Y ŴY à) ≤ 1+

(
11.2

(N+1)q

)4
.

(4.14)
In particular, under the above conditions, the matrix Y has full (row) rank
M . Moreover, the conjugate gradient method applied to (4.2) converges lin-
early, i.e.,

‖êl‖Ŵ
−1 ≤ 2

(
11.2

(N + 1)q

)4l

‖ê0‖Ŵ
−1 (4.15)

with the initial error ê0 := ŴY àK−1y and the error êl := f̂ l−ŴY àK−1y
of the l-th iterate f̂ l.

Proof. Setting β = 4 in Theorem 2 and using (4.9) yields 4
√

25c4ζ(3) ≤
11.2 and finally (4.14). Applying the standard estimate for the convergence
of the conjugate gradient method, see e.g. [1, p. 289], yields the assertion
(4.15).

We solve problem (4.2) by a factorised variant of conjugated gradients
(CGNE, N for ”Normal equation” and E for ”Error minimisation”), where
we use again the nonequispaced fast spherical Fourier transform for fast
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matrix vector multiplications with Y and its adjoint Y à. Note that for
(N + 1)q > 11.2 a constant number of iterations suffices to decrease the
error to a certain fraction, i.e., the total number of floating point operations
is bounded by the complexity O(N2 log2 N +M) of the fast spherical Fourier
transform.

Remark 3. The condition on the separation distance q is optimal up
to a constant. More formally, M ∈ N nodes can be distributed on the
sphere such that their separation distance is approximately 3.8/

√
M , see

[25] for an introduction. Choosing the polynomial degree N = b3.8q−1c − 1
yields M > (N + 1)2 and thus rank(Y ) < M . In contrast, we showed that
(N + 1)q > 11.2 suffices for full rank(Y ) = M .

5. Numerical results

In this section, we present numerical examples in order to confirm our theo-
retical findings. We start in Example 1 and Example 2 with two MATLAB
tests to shed some light on the typical behaviour of the least squares and
interpolation problem.

Furthermore, the two conjugate gradient methods have been imple-
mented in C and are tested with global atmospheric temperature data on
a Intel Xeon TM 3.00 GHz CPU system with 12 GB main memory, SuSE-
Linux (kernel 2.6.5-7.257-smp, gcc 3.3.3) in double precision arithmetic. We
have used the libraries FFTW 3.0.1 [9] and NFFT 3.0 [12], the latter with
default settings (pre-computed Kaiser–Bessel window function, cut-off pa-
rameter m = 6, oversampling factor σ = 2, and stabilisation threshold
κ = 1000 for the NFFT on the sphere). Note that the NFFT 3.0 includes
the nonequispaced fast spherical Fourier transforms from [15, 13].

Example 1. We consider the least squares problem (3.1) and the related
condition number of Y àY ∈ C(N+1)2×(N+1)2 with respect to the mesh norm
δX . The sampling set is initially given by the generalised spiral with Mmax =
400 nodes, see also Figure 1(a). By removing an increasing number of nodes,
starting at the north pole, we introduce a larger and larger growing “hole”
resulting in an increasing mesh norm δX , see Figure 4(a). In particular
δX = π/2 corresponds to the case with no sampling nodes on the northern
hemisphere. For each such sampling set, we consider the matrix Y of size
M × (N + 1)2 with 200 ≤ M ≤ 400 nodes and for different polynomial
degrees.

The same experiment has been run for randomly drawn nodes from the
uniform distribution on the sphere in Figure 4(c).

As can be seen in Figures 4(b/d), the condition number increases
strongly for δX → π/2 – independent of the fact that the system Y f̂ = y
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is still largely overdetermined, i.e., (N + 1)2 � M . In contrast to this, the
matrix Y àY is well conditioned whenever the inverse mesh norm is bounded
from below by the polynomial degree, hence δ−1

X > N .

Example 2. We consider the optimal interpolation problem (4.1) and
the eigenvalue distribution for different weights ŵk. Again, we use the
generalised spiral with M = 400 nodes as sampling set. The weights ŵk,
k = 0, . . . , N , are computed by means of (4.13) from the samples of the β-th
B-spline for β = 1, 2, 3, 4. Increasing the smoothness β of the Chebyshev
coefficients in (4.8) yields a stronger localisation of the B-spline kernel and
thus a more rapid off-diagonal decay in the matrix K = Y ŴY à ∈ CM×M .

Besides a lower condition number, we see from Figure 3(b), that the
eigenvalues λ0 ≤ . . . ≤ λ399 cluster around one for larger values of β –
which leads of course to much faster convergence of the conjugate gradient
method. Also note that for a polynomial degree closer to some critical value
N ≈ CqX , strong localisation β = 4 does not pay off, cf. Figure 3(a). This
behaviour probably results from an increased effective width of the main
lobe of the B-spline kernel for larger β.

Example 3. In this example, we demonstrate both, the overdetermined
and the underdetermined case for approximation with scattered data, cor-
responding to the least squares approximation and optimal interpolation
cases, respectively. To this end, we chose a freely available data set from the
NASA AMSU mission (see [21]) containing global atmospheric temperature
data of the earth from 5 November 2006 measured by a satellite. Figure
7(a) shows the temperature data. Owing to the satellite’s trajectory,

the set of data contains multiple, but in form and size similar, slits
which are most wide at the equator. Within the slits, no data was acquired.
The whole data comes already preprocessed and mapped onto a equiangular
grid with 180 nodes in latitudinal direction and 360 nodes in longitudinal
direction. From the theoretical amount of 180 × 360 = 64, 800 nodes, only
53, 996 actually provide measured temperature values and are used for for-
mulating the reconstruction problem. The rest lies in the uncovered regions.

In both cases, least squares approximation and optimal interpolation,
we try to compute a reasonable continuation of the temperature distribution
to these regions. In the first case, we iteratively compute a least squares ap-
proximation to the given data by solving the corresponding weighted normal
equation of the first kind (3.2) using the CGNR algorithm. As weights, we
choose the Voronoi weights wj from Definition 1. Figure 7(b) shows the
obtained approximation at degree N = 128 after 10 iterations. Compared
to the original data, the approximation is smoother and does not fulfil any
interpolation condition. Nevertheless, it might be taken as estimate for the
data missing in the slits. Figure 7(c) shows the original data with values
filled in from the approximation.
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(a) Spiral nodes with gap at the north
pole.
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(b) Condition number of Y àY .

(c) Random nodes with gap at the north
pole.
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(d) Condition number of Y àY .

Figure 4 Condition number cond(Y àY ), Y ∈ CM×(N+1)2 , with respect to the approxi-
mate inverse mesh norm δ−1

X ∈ [2/π, . . . , 7), i.e., 200 ≤ M ≤ 400. The polynomial degree
is N = 1 (solid), N = 2 (dotted), N = 4 (dash-dot), and N = 6 (dashed).

In the case of interpolation, we pick out a small portion of the tem-
perature map in the region of Australia, shown in Figure 6(a), and choose
a fairly high polynomial degree N = 512. In the corresponding normal
equation of second kind (4.2), we use weights w̃n

k = (1 + k)−2. We did not
choose B-spline weights, since the corresponding kernels are well localised
and therefore not suited for smooth continuation of the interpolant to the
missing regions. After 30 iterations using the CGNE algorithm, we evaluate
the resulting interpolant on a refined grid with 4 fold resolution in each direc-
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(a) Polynomial degree N = 30.
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(b) Polynomial degree N = 40.

Figure 5 Eigenvalue distribution of the matrix K = Y ŴY à ∈ CM×M for weighting
matrices obtained from the sampled B-spline of order β = 1 (solid), β = 2 (dotted), β = 3
(dash-dot), and β = 4 (dashed).
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(a) Small portion of the temperature
map in the region of Australia.

Longitude

L
at

it
u
d
e

100 160

160

180

200

220

240

260

280

300

320

340

-10

-60

(b) Optimal interpolant with respect to
the weights w̃n

k = (1 + k)−2 at four fold
resolution.

Figure 6 Optimal interpolation using a small portion of the temperature map.

tion, shown in Figure 6(b). Due to the weights w̃n
k , smooth interpolants are

favoured but the interpolation property enforces the conservation of sharp
transitions at the edges of the continent. In the regions with missing data,
however, the interpolant is smooth and does not totally recover sharp edges.

Remark 4. We shall mention here that the shown examples do not essen-
tially require the use of nonequispaced spherical Fourier transforms. Owing
to the equiangular distribution of the nodes, algorithms based on equispaced
spherical Fourier transforms might also be employed to solve the problem.
Nevertheless, this is due to the fact that the data has already been pre-
processed. In most cases, it would be favourable to apply the described
techniques directly to un-gridded sensor data for which we would not have
to change a single line of code.
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(a) The original atmospheric temperature data in Kelvin.
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(b) Weighted least squares approximation at degree N = 128.
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(c) Original data with filled-in values from the least squares approxima-
tion at degree N = 128.

Figure 7 Least squares approximation to the global temperature data.

6. Conclusions

We have shown that the spherical Fourier matrix Y has full rank if either
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• for δ-dense sampling sets X ⊂ S2 of cardinality M ∈ N we have

N <
1

154 δ
,

• or for q-separated sampling sets X ⊂ S2 of cardinality M ∈ N we
have

N >
11.2
q

− 1.

In these cases, the condition numbers of the related normal equations are
bounded, thus the total number of floating point operations is bounded by
the complexity O(N2 log2 N + M) of the fast spherical Fourier transform.
Furthermore, our conditions for the least squares approximation as well as
for the stable interpolation are best possible within a reasonable constant.
Numerical results support our theoretical findings.
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