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Nonequispaced fast Fourier transforms without oversampling
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Recently, the fast Fourier transform (FFT) has been generalised for arbitrary sampling nodes by the use of approximation
schemes. We show that such nonequispaced FFTs can be implemented without oversampling, i.e., no extra memory besides
the input and output array is needed.
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1 Introduction

Without doubt, the fast Fourier transform [1] belongs to thealgorithms with the greatest influence on the development and
practice of science and engineering. It has become of great importance in scientific computing with applications in digital
signal and image processing as well as in the numerical solution of differential and integral equations. Two shortcomings of
traditional schemes are the need for equispaced sampling and the restriction to the system of complex exponential functions.
Both problems have attracted much attention and led to the development of nonequispaced FFTs [2–6]. The common concept
in such schemes is to trade exactness for efficiency; insteadof precise computations up to machine precision, the proposed
methods guarantee a given target accuracy.

State of the art approaches for nonequispaced FFTs rely internally on an oversampled FFT and a dedicated approximation
scheme. If the input and output arrays just fit into the main memory, these methods are no longer applicable. Without over-
sampling, the accuracy of these methods cannot be controlled and numerical experiments indeed show that the approximation
fails. We generalise the approach [7] and give error bounds for the case of no oversampling and even undersampling. The
number of floating point operations of the new method is within logarithmic terms slightly worse than for the aforementioned
algorithms.

2 Local Taylor series expansions

Let an even bandwidthN ∈ N, a vector of Fourier coefficientŝf ∈ CN , and the trigonometric polynomialf : [− 1
2 , 1

2 ) → C,

f(x) =

N
2
−1

∑

k=− N
2

f̂ke−2πikx

be given. Moreover, letM ∈ N and a set of sampling nodesxj ∈ [− 1
2 , 1

2 ), j = 0, . . . , M − 1, be given. The nonequispaced
discrete Fourier transform is defined as the evaluation of the trigonometric polynomialf at the nodesxj . We collect these
samples in the vectorf ∈ CM , fj = f(xj), j = 0, . . . , M − 1, and denote the nonequispaced Fourier matrix byA ∈ CM×N ,
aj,k = e−2πikxj , k = −N

2 , . . . , N
2 − 1, j = 0, . . . , M − 1. Thus, the nonequispaced discrete Fourier transform is nothing else

than the matrix vector productf = Af̂ , which obviously takesO(MN) floating point operations. Nonequispaced FFTs [5]
reduce this toO(N log N + | log ε|M), whereε denotes the accuracy of the result. We generalise [7] and approximatef

locally by a multivariate or two point Taylor polynomial. A straightforward error analysis yields the following simpleresults.

Theorem 2.1 Letf be a trigonometric polynomial of bandwidthN ∈ N andx ∈ [− 1
2 , 1

2 ) be an evaluation node. Moreover,
let an under- or oversampling factorσ > 0 with the corresponding FFT-lengthn = σN ∈ N, a cut-off parameterm ∈ N0,
and the lattice pointsyl = l

n
, l = −n

2 , . . . , n
2 , be given.

1. Letf and its firstm−1 derivatives be evaluated at the nearest lattice pointyl, |yl−x| ≤ |yr−x| for all r = −n
2 , . . . , n

2 .
The Taylor expansion aboutyl obeys

|f(x) −

m−1
∑

s=0

f (s)(yl)

s!
(x − yl)

s| ≤
πm

2mσmm!
‖f‖∞.
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2. Letx ∈ [yl, yl+1], then the two point Taylor expansion aboutyl andyl+1, i.e.,

pm(x) :=
m−1
∑

s=0

m−1−s
∑

t=0

(

m − 1 + t

t

)

( (x − yl)
s+t(yl+1 − x)mnm+s

s!
f (s)(yl)+

(−1)t(x − yl+1)
s+t(x − yl)

mnm+s

s!
f (s)(yl+1)

)

obeys

|f(x) − pm(x)| ≤
π2m

22mσ2m(2m)!
‖f‖∞.

Theorem 2.2 Now letf be a multivariate trigonometric polynomial of multibandwidth N = (N1, . . . , Nd) ∈ Nd and
x ∈ [− 1

2 , 1
2 )2 an evaluation node. Moreover, let an under- or oversamplingfactorσ > 0 with the corresponding FFT-length

n = σN ∈ Nd, a cut-off parameterm ∈ N0, and the lattice pointsyl = ( l1
n1

, . . . , ld
nd

); l1 = −n1

2 , . . . , n1

2 ; . . . ; ld =

−nd

2 , . . . , nd

2 ; be given. Letf and its partial derivatives of order at mostm − 1 be evaluated at the nearest lattice pointyl.
The Taylor expansion aboutyl obeys

|f(x) −
∑

|s|≤m−1

Dsf(yl)

s!
(x − yl)

s| ≤
dmπm

2mσmm!
‖f‖∞.

If σ > 0 is fixed, the single point Taylor expansion based nonequispaced FFT takes for accuracyε > 0, for a total number of
N = N1·N2·. . .·Nd Fourier coefficients, and forM sampling nodes onlyO(| log ε|d(N log N+M)) floating point operations.
The (univariate) two point Taylor expansion based nonequispaced FFT would takeO(| log ε|N log N + | log ε|2M)) floating
point operations, which can be reduced by anf -independent preprocessing step to the above complexity.

The striking point however is the fact that without any oversamplingσ = 1 these algorithms are exponentially accurate
with increasingm. This fact is in sharp contrast to the window-based nonequispaced FFTs [2–4].
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Fig. 1 Error maxj |f(xj) − f̃m(xj)|/
P

k |f̂k| for increasing cut-off parameterm = 0, . . . , 19 and Gaussian window function (solid),
single point Taylor expansion (dotted), and two point Taylor expansion (dashed). The number of Fourier coefficients andthe number of
nodes areN = M = 1024.
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