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1. Introduction. The fast Fourier transform (FFT) [4, 8] belongs to the algo-
rithms with large impact on science and engineering. Shortcomings are the need for
equispaced sampling and the fact that sparsity, as used in many recent approaches to
tackle large scale and high dimensional problems, is not reflected in reduced compu-
tational costs.

The development of nonequispaced FFTs is well understood, see e.g. [10] and
references therein, and the common concept in such schemes is to trade exactness
for efficiency; instead of precise computations up to machine precision, the proposed
methods guarantee a given target accuracy. In its most general form, given a space
dimension d ∈ N, a nonharmonic bandwidth N = 2L, L ∈ N, a set of frequencies
T̃ = {ξk ∈ [0, N ]d : k = 1, . . . ,M2}, a set of Fourier coefficients ûk ∈ C, k = 1, . . . ,M2,
and a set of evaluation nodes X̃ = {xj ∈ [0, N ]d : j = 1, . . . ,M1}, we aim to compute
the sums

uj := u(xj) =
M2∑
k=1

ûke2πiξkxj/N , j = 1, . . . ,M1. (1.1)

While the naive computation takes O(M1M2) floating point operations, the FFT for
nonequispaced data in space and frequency domain [6] or type-3 nonuniform FFT
[9] reduce this to O(Nd logN + | log ε|d(M1 + M2)), where ε > 0 denotes the target
accuracy.

Yet another analysis-based fast algorithm is the butterfly approximation scheme,
which can be traced back at least to [12] and has found a series of recent applications
in [18, 13, 16, 3]. Moreover it is well known that certain blocks of the discrete Fourier
transform are approximately of low rank [5], which has lead to the butterfly sparse
Fourier transforms [1, 17]. Hence, the sums (1.1) with d ≥ 2, M1 = M2 = O(Nd−1),
and well distributed sampling sets T̃ , X̃ on smooth d− 1 dimensional manifolds, can
be computed in O(Nd−1 logNpd+1) floating point operations, where p ∈ N denotes
the local expansion degree.

In this paper, we follow [17] and present a rigorous error analysis which shows
how the local expansion degree depends on the target accuracy and the nonharmonic
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bandwidth. After introducing the necessary notation and modifying the original ap-
proach slightly, we prove in Theorem 2.6 an error estimate given a local admissibility
condition is fulfilled. The combination of the local approximation is done via the
butterfly scheme in Section 3 and we prove how the error propagates through the
different levels of the method in Theorem 3.1 - this also allows for a complexity es-
timate. Moreover, we show that the original scheme becomes numerically unstable
if a large local expansion degree is used and remove this problem by representing all
approximations in a Lagrange type basis instead of the previously used monomial
basis, cf. Section 2.4. All theoretical results are illustrated by numerical experiments
and we finally conclude our findings in Section 5.

2. Prerequisites and local approximation. Let the numbers p,N ∈ N, p ≥
2, be fixed and let the Chebyshev polynomials of the first kind Tp : [−1, 1] → R,
Tp(t) = cos(p arccos t), be given. The zeros of the p-th Chebyshev polynomial are
given by

tj = cos
2j + 1

2p
π, j = 0, . . . , p− 1, (2.1)

and we define the corresponding Lagrange polynomials Lk : R→ R by

Lk(t) =
p−1∏
j=0
j 6=k

t− tj
tk − tj

, k = 0, . . . , p− 1. (2.2)

For subsequent use, we collect the following auxiliary estimates which are either stan-
dard or can be found e.g. as exercises in [14].

Lemma 2.1. For p ∈ N, p ≥ 3, and x ∈ R, |x| ≤ 2π
p−1 , we have

cos
2π
p− 1

≤ cosx, (2.3)

1− x2

2
≤ cosx, (2.4)(

1− cos
2π
p− 1

)
(p− 1)2

2π2
≤ 2(1− cosx)

x2
, (2.5)

16
π4
≤
(

2(1− cosx)
x2

) 2π
x
x→0−→ 1. (2.6)

Proof. The first estimate follows since the cosine is decreasing in [0, 2π
p−1 ] ⊂ [0, π]

and even. Integrating cosx ≤ 1 twice yields the second claim.
The relations x ≤ tanx for x ∈ [0, π2 ) and cosx ≤ 0, sinx ≥ 0, x ≥ 0 for x ∈ [π2 , π],

yield x cosx− sinx ≤ 0 and by integration

x sinx− 2(1− cosx) ≤ 0, x ∈ [0, π].

Dividing by x3/2 this yields f ′(x) ≤ 0 for the even function f(x) = 2(1−cos x)
x2 and

thus f(x) ≥ f
(

2π
p−1

)
, |x| ≤ 2π

p−1 , which is the third assertion.
Considering x ∈ [−π, 0), we have 0 < f(x) ≤ 1 and together with L’Hospitals rule

(f(x))
2π
x ≥ 1, x ∈ [−π, 0), and

2π
x

log f(x)→ 0, x→ 0.
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Setting g(x) = x
2π log 16

π4 and h(x) = log f(x) yields g(0) = h(0), g(π) = h(π), and

h′′(x) = − 1
1− cosx

+
2
x2
≤ 0, x ∈ [0, π].

Hence, the function h is concave and we obtain h(x) ≥ g(x). Since g is decreasing,
this yields the assertion 2π

x h(x) ≥ log 16
π4 .

Lemma 2.2. For p ∈ N, p ≥ 3, the Chebyshev roots (2.1) and the corresponding
Lagrange polynomials (2.2) obey

p−1∏
k=0
k 6=n

|tk| =
p

2p−1
if p = 2n+ 1, n ∈ N, (2.7)

max
x∈[−1,1]

p−1∑
s=0

(Ls(x))2 ≤ 2, (2.8)

max
x∈[−1,1]

p−1∑
s=0

|Ls(x)| ≤ 1 +
2
π

log p, (2.9)

max
x∈[−3,3]

|Ls(x))| ≤ 34
p
2

4p
. (2.10)

Proof. Let p = 2n + 1, n ∈ N, then tn = 0 and Ln(0) = 1. Moreover, we have
T ′p(0) = pUp−1(0) = p, where Up−1(cos θ) = sin pθ

sin θ denotes the Chebyshev polynomial
of second kind. Via the representation

Ls(x) =
Tp(x)

(x− ts)T ′p(ts)
(2.11)

and Tp(x) = 2p−1
∏p−1
j=0(x− tj) this yields for x = 0 the first assertion.

The Gauss-Chebyshev quadrature yields the discrete orthogonality

p−1∑
s=0

Tk(ts)Tl(ts) =


0 for k 6= l,

p for k = l = 0,
p
2 for k = l 6= 0,

and since Ls(tj) = δs,j also the expansion of the Lagrange polynomials

Ls(x) =
2
p

p−1∑′

j=0

Tj(ts)Tj(x) :=
1
p
T0(ts)T0(x) +

2
p

p−1∑
j=1

Tj(ts)Tj(x),

where the prime indicates that the first summand is weighted by 1
2 . Hence, we have

p−1∑
s=0

(Ls(x))2 =
p−1∑
s=0

4
p2

 p−1∑′

k=0

Tk(ts)Tk(x)

 p−1∑′

l=0

Tl(ts)Tl(x)


=

4
p2

p−1∑′

k=0

p−1∑′

l=0

Tk(x)Tl(x)
p−1∑
s=0

Tk(ts)Tl(ts)
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and since |Tk(x)| ≤ 1 for x ∈ [−1, 1] the second claim by

≤ 4
p2

(
1
4
p+ (p− 1)

p

2

)
≤ 2.

The third estimate is the classical Lebesgue constant, cf. [14, Thm. 1.2].
Finally, we note that (2.8) implies |Ls(x))| ≤

√
2 for |x| ≤ 1 and it remains to

show the bound for |x| ∈ [1, 3]. Since Ls is a polynomial and has all its zeros inside
[−1, 1], it attains its extrema at x = ±3. Using once more (2.11), the explicit formula

Tk(x) =
(x+

√
x2 − 1)k + (x−

√
x2 − 1)k

2
, |x| ≥ 1,

the simple bound (±3− ts)2 ≥ 4, and

(Up−1(ts))
2 =

sin2
(

2s+1
2 π

)
sin2

(
2s+1

2p π
) ≥ sin2

(
2s+ 1

2
π

)
= (−1)2s = 1, s = 0, . . . , p− 1,

we end at the last assertion.

2.1. Interpolation operators. We call A := [a, b], a < b, box and denote its
width and its center by wA := diamA = b− a and cA := a+b

2 , respectively. Further,
we define in

[
− 1

2 ,
1
2

]
the vector of the normalised Chebyshev nodes and the vector of

the equispaced nodes by

α = (αj)
p−1
j=0 , αj =

1
2
tj , β = (βj)

p−1
j=0 , βj =

1
2
− j

p− 1
.

For a box B ⊂ R we define the linear space of all finite expansions of exponential
functions

ΠB(A) :=

g : A→ C : g(x) =
K∑
j=1

ĝje2πiξjx/N , K ∈ N, ĝj ∈ C, ξj ∈ B


and its subspace with p equispaced frequencies ξBj := cB + βjw

B ,

Πp
B(A) :=

g : A→ C : g(x) =
p−1∑
j=0

ĝABj e2πixξBj /N , ĝj ∈ C

 . (2.12)

Let C(A) denote the space of continuous functions on A and define the trigonometric
interpolation operator

J ABp : C(A)→ Πp
B(A), g 7→ J ABp g =

p−1∑
s=0

ĝABs e2πixξBs /N , (2.13)

such that in the (shifted and dilated) Chebyshev nodes

xAr := cA + αrw
A (2.14)

the interpolation condition J ABp g(xAr ) = g(xAr ) for r = 0, . . . , p− 1 holds true.
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In order to analyse this interpolation operator, we need a small detour on inter-
polation by polynomials

Π̃p−1(C) :=

q : C→ C : q(z) =
p−1∑
j=0

cjz
j : cj ∈ C


in the complex plane. Let the mapping z : A→ C,

z(x) := e−2πix wB

(p−1)N , (2.15)

and nodes zABj := z(xAj ) on the arc ΓABp := z(A) be given. Under the so-called
admissibility condition wAwB ≤ N and for p ≥ 2, the nodes are distinct and we
define the Lagrange polynomials L̃ABk : C → C and the interpolation operator IABp :
C(ΓABp )→ Π̃p−1(C),

L̃ABk (z) :=
p−1∏
j=0
j 6=k

z − zABj
zABk − zABj

, (2.16)

IABp g̃ :=
p−1∑
j=0

g̃(zABj )L̃ABj . (2.17)

We have the following result.
Lemma 2.3. Let p ∈ N, p ≥ 3, two boxes A,B ⊂ R be admissible in the sense

wAwB ≤ N , and the Lagrange functions lABr : A→ C,

lABr (x) := L̃ABr (z(x)), r = 0, . . . , p− 1, (2.18)

be given. Then, the interpolation operator (2.13) has the representation

J ABp g(x) = e2πi
“
cB+wB

2

”
x/N

p−1∑
r=0

g(xAr )e−2πi
“
cB+wB

2

”
xAr /N lABr (x) (2.19)

and its operator norm is bounded by

‖J ABp ‖ := sup
g∈C(A)\{0}

‖J ABp g‖C(A)

‖g‖C(A)
≤ Cp, Cp :=

√
Kp

(
1 +

2
π

log p
)
, (2.20)

where

Kp :=

 2π2(
1− cos 2π

p−1

)
(p− 1)2

p−1

, Kp ≤
π4

16
, lim

p→∞
Kp = 1. (2.21)

Proof. Let v : C → C be continuous with v(z) = v(z(x)) = g(x) for x ∈ A.
The polynomial q ∈ Π̃p−1(C), which interpolates the points (zABr , v(zABr )) ∈ C × C,
r = 0, . . . , p− 1, is unique and given by

q(z) =
p−1∑
r=0

v(zABr )L̃r(z) =
p−1∑
r=0

g(xAr )lABr (x).
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The assertion follows, since the function

e2πi
“
cB+wB

2

”
x
N · q(z(x)) · e−2πi

“
cB+wB

2

”
xAr
N

lies in Πp
B(A) and interpolates the function g in the nodes xAr , r = 0, . . . , p − 1.

Furthermore, we have

max
x∈A
|J ABp g(x)| = max

x∈A

∣∣∣∣∣e2πi
“
cB+wB

2

”
x/N

p−1∑
r=0

g(xAr )e−2πi
“
cB+wB

2

”
xAr /N lABr (x)

∣∣∣∣∣
≤ ‖g‖C(A) max

x∈A

p−1∑
r=0

|lABr (x)|.

Without loss of generality, let now the box B be such that wAwB = N . Using
xAr = cA+αrwA, the mapping y : A→ [− 1

2 ,
1
2 ], and the normalised Lagrange functions

lr : [− 1
2 ,

1
2 ]→ C,

y(x) :=
1
wA

(x− cA) =
wB

N
(x− cA), (2.22)

lr(y) := lABr (x(y)) =
p−1∏
j=0
j 6=r

e−2πi y
p−1 − e−2πi

αj
p−1

e−2πi αrp−1 − e−2πi
αj
p−1

, (2.23)

yields the relation

|lABr (x)|2 = |lr(y)|2 =
p−1∏
j=0
j 6=r

1− cos
(

2π
p−1 (y − αj)

)
1− cos

(
2π
p−1 (αr − αj)

) .
Since y−αj ∈ [−1, 1] and αr−αj ∈ [−1, 1], we apply Lemma 2.1, estimates (2.5) and
(2.4), to obtain

≤
p−1∏
j=0
j 6=r

4π2

2
(

1− cos 2π
p−1

)
(p− 1)2

(y − αj)2

(αj − αs)2

= Kp

p−1∏
j=0
j 6=r

(
2y − tj
tr − tj

)
= Kp(Lr(2y))2.

The assertion follows by Lemma 2.2 estimate (2.9) in

max
x∈A

p−1∑
r=0

|lABr (x)| ≤
√
Kp max

x∈[−1,1]

p−1∑
r=0

|Lr(x)| ≤
√
Kp(1 +

2
π

log p).

Setting x = 2π
p−1 in Lemma 2.1 (2.6) finally yields limp→∞Kp = 1 and Kp ≤ π4

16 .
Remark 2.4. In [17], the extremal points tmax

j = cos jpπ, j = 0, . . . , p, of the
Chebyshev polynomial were used in space and frequency domain. This yields a glob-
ally continuous approximant. In contrast, we use the Chebyshev nodes in space and
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equispaced nodes in frequency domain. This gives a close connection to polynomial
interpolation in the complex plane and thus allows for the subsequent error analysis.
Moreover, the modification to equispaced nodes in frequency domain allows for an ex-
plicit, stable, and effective representation of the trigonometric interpolation operator
in a Lagrange type basis.

In contrast to [2, Thm. 3], where an interpolation by means of Lagrange poly-
nomials with real nodes is used, we always interpolate with respect to the real spatial
variable x and by means of our Lagrange functions lABr , which are Lagrange polynomi-
als with complex nodes via the mapping (2.15). In particular, interpolating a function
from ΠB(A) yields a function in its subspace Πp

B(A).
For spatial dimensions d > 1, a box is given as a Cartesian product A = A(1) ×

. . . × A(d), where A(k) = [ak, bk], k = 0, . . . , d, are one-dimensional boxes. We define
the center and the width by

cA :=
1
2

(a1 + b1, . . . , ad + bd)>, wA := diam∞A := max
k=1,...,d

(bk − ak),

respectively. For boxes A,B ⊂ Rd, we use tensor products of the spaces ΠB(A) and
Πp
B(A) and define the interpolation operator in a straightforward manner by

J ABp =
d⊗
r=1

J A
(r)B(r)

p .

2.2. Error analysis. In [17] a Taylor expansion of the complex exponential
function in the real variable has been used to motivate a restriction on the product of
the widths of the boxes A and B. Subsequently, we present an error estimate for the
interpolation J ABp g if g ∈ ΠB(A) and A,B fulfil such an admissibility condition. Its
main ingredient is the following Taylor expansion of the power function on the unit
circle.

Lemma 2.5. Let p ∈ N, p ≥ 5, Γp := {z ∈ C : z = e−2πix/(p−1),− 1
2 ≤ x ≤ 1

2},
and α ∈ [0, p− 1], then we have for z ∈ Γp the estimate∣∣∣∣∣zα −

p−1∑
k=0

(
α

k

)
(z − 1)k

∣∣∣∣∣ ≤ cp
with the constant

cp :=
1
πp

(
π

p− 1

)p
. (2.24)

Proof. The function g : C \ (−∞, 0]→ C, g(z) := zα, is holomorphic and can be
represented by its Taylor series at z = 1 in Γp for p ≥ 5. Using the estimate (2.4),
yields

|z − 1|2 = 2
(

1− cos
2πx
p− 1

)
≤
(

2πx
p− 1

)2

≤
(

π

p− 1

)2

< 1

and we finally follow the proof of [15, Thm. 1] to obtain∣∣∣∣∣zα −
p−1∑
k=0

(
α

k

)
(z − 1)k

∣∣∣∣∣ ≤
∞∑
k=p

∣∣∣∣(αk
)

+
(

α

k + 1

)∣∣∣∣
∣∣(1− z)p − (1− z)k+1

∣∣
|z|
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≤ 2|z − 1|p
∣∣∣∣(αp

)∣∣∣∣ ≤ 2|z − 1|p

2πp
,

where the last estimate can be proven by induction over p ≥ 5.
Theorem 2.6. Let p,N ∈ N, p ≥ 5, two boxes A,B ⊂ Rd be admissible in the

sense

wAwB ≤ N,

and g ∈ ΠB(A), g(x) :=
∑M2
k=1 ĝke2πiξkx/N , ĝk ∈ C, k = 1, . . . ,M2, then we have the

error estimate

‖g − J ABp g‖C(A) ≤
(1 + Cp)(Cdp − 1)

Cp − 1
· cp · ‖ĝ‖1,

where the constants are given by (2.20) and (2.24), respectively.
Proof. Without loss of generality, let the box B be such that wAwB = N . We start

with the univariate case d = 1 and shift and dilate A 7→ [− 1
2 ,

1
2 ] and B 7→ [−N2 ,

N
2 ].

Together with g̃ : [− 1
2 ,

1
2 ]→ C, g̃(y) :=

∑M2
k=1 ĝke2πiξkc

A/Ne2πiξky/w
B

, this yields

J ABp g(x) = e2πicBx/NJpg̃(y), y :=
1
wA

(x− cA), Jp := J [− 1
2 ,

1
2 ][−N2 ,

N
2 ]

p .

Now, we map [− 1
2 ,

1
2 ] 7→ Γp and set h : Γp → C, h(z) := z

p−1
2
∑M2
k=1 ĥkz

−(p−1)ξk/w
B

,
ĥk := ĝke2πiξkc

A/N , which leads to

Jpg̃(y) = z−
p−1

2 Iph(z), z := e−2πiy/(p−1), Ip := I [− 1
2 ,

1
2 ][−N2 ,

N
2 ]

p .

Both mappings leave the error unchanged, i.e.,

max
x∈A
|g(x)− J ABp g(x)| = max

y∈[− 1
2 ,

1
2 ]
|g̃(y)− Jpg̃(y)| = max

z∈Γp
|h(z)− Iph(z)| .

We rewrite h(z) =
∑M2
k=1 ĥkz

ηk with ηk ∈ [0, p−1], and approximate h by its truncated
Taylor series hp ∈ Π̃p−1(C) at z = 1,

hp(z) :=
M2∑
k=1

ĥk

p−1∑
r=0

(
ηk
r

)
(z − 1)r.

Due to the reproduction of polynomials Iphp = hp and the bound on the operator
norm, cf. proof of Lemma 2.3,

‖Ip‖ := sup
h∈C(Γp)
‖h‖C(Γp)=1

‖Iph‖C(Γp) = ‖J ABp ‖ ≤ Cp,

Lemma 2.5 yields the assertion by

max
z∈Γp

|h(z)− Iph(z)| ≤ max
z∈Γp

|h(z)− hp(z)|+ max
z∈Γp

|hp(z)− Iph(z)|

≤ (1 + ‖Ip‖) max
z∈Γp

|h(z)− hp(z)|

≤ (1 + Cp)cp
M2∑
k=1

|ĝk|.
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Now, let d > 1 and B = B(1) × . . . × B(d), A = A(1) × . . . × A(d) ⊂ [0, N ]d be
admissible. Since J ABp = J A(1)B(1)

p ⊗ . . .⊗J A(d)B(d)

p , we immediately have ‖J ABp ‖ ≤
Cdp . By slight abuse of notation we write J A(ν)B(ν)

p also for the interpolation of a
d-variate function in its ν-th variable and obtain by∥∥g − J ABp g

∥∥
C(A)

≤
∥∥∥g − J A(1)B(1)

p g
∥∥∥
C(A)

+
∥∥∥J A(1)B(1)

p g − J ABp g
∥∥∥
C(A)

≤
d∑
ν=1

ν−1∏
µ=1

∥∥∥J A(µ)B(µ)

p

∥∥∥ ∥∥∥g − J A(ν)B(ν)

p g
∥∥∥
C(A)

≤ (1 + Cp)cp‖ĝ‖1
d∑
ν=1

Cν−1
p

the final error estimate.

2.3. Realisation. The local approximation by means of the interpolation op-
erator needs to be realised using a basis for the ansatz space Πp

B(A). Subsequently,
we discuss a variant of the original approach [17] which uses a monomial type basis
and a new variant which relies on a Lagrange type basis. While both approaches take
approximately the same amount of computation, the latter is much more stable. In
both cases, the univariate realisation generalises easily to the multivariate case since
the tensor product structure of the interpolation operator just turns into a Kronecker
product structure of the involved matrices.

Section 3 considers the butterfly scheme built upon the dyadic decomposition of
the spatial domain X and the frequency domain T . For A ⊂ X and B ⊂ T admissible,
this asks for the approximation uAB ∈ ΠB(A),

uAB := J ABp
∑
S∈SB

uPS , (2.25)

where

SB :=
{[
cB − wB

2
, cB
]
,

[
cB , cB +

wB

2

]}
,

denotes the set of sons, for d = 1 at most two, of the set of frequencies

B =
[
cB − wB

2
, cB +

wB

2

]
and the interpolation error is small in each of the spatial sets, for d = 1 again at most
two,

A =
[
cA − wA

2
, cA +

wA

2

]
,

which are subsets of their father

P :=
[
cP − wP

2
, cP +

wP

2

]
.

Subsequently, we rely on the admissibility condition wAwB = N and on the dyadic
decomposition which results in wPwB = 2N , see Figure 2.1 for an illustration of the
sets.
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P

A

cP − wP

2 cP cP + wP

2

{ Sleft Sright } = SB

B

cB − wB

2 cB cB + wB

2

Figure 2.1. Illustration of the spatial set A ⊂ P and frequency set B ⊃ SB.

2.3.1. Monomial type basis. We closely follow the discussion in [17, Sect. 3.2]
for solving the interpolation problem. The interpolant J ABp g for a function g ∈ ΠB(A)
is given by gAB(x) =

∑p−1
s=0 ĝ

AB
s e2πiξBs x/N (x) with the coefficient vector

ĝAB =
(
fABs

)p−1

s=0
= (MAB)−1gAB , gAB =

(
g(xAr )

)p−1

r=0
,

MAB :=
(

e2πiξBs x
A
r /N

)p−1

r,s=0
, (2.26)

where we use the equally spaced nodes ξBs ∈ B and Chebyshev nodes xAr ∈ A, cf. (2.12)
and (2.14). Using the two diagonal matrices

DAB
1 := diag

(
e2πi(cA+αrw

A)cB/N
)p−1

r=0
, DAB

2 := diag
(

e2πicAβsw
B/N

)p−1

s=0
,

the matrix MAB ∈ Cp×p can be factorised as

MAB = DAB
1 GDAB

2 , G :=
(
e2πiαrβs

)p−1

r,s=0
, (2.27)

where the matrix G ∈ Cp×p is independent of A and B. Applied to (2.25), this yields

ûAB =
(
DAB

2

)−1

G−1
(
DAB

1

)−1

uAB , uAB =

( ∑
S∈SB

uPS(xAr )

)p−1

r=0

.

Given the coefficients ûPS = (ûPSs )p−1
s=0 ∈ Cp in uPS(x) =

∑p−1
s=0 û

PS
s e2πiξSs x/N , we

compute

uAB =
∑
S∈SB

NASûPS , NAS :=
(

e2πiξSs x
A
r /N

)p−1

r,s=0
.

Again, using two diagonal matrices

EAS
1 := diag

(
e2πi(cA+αrw

A)cS/N
)p−1

r=0
, EAS

2 := diag
(

e2πicAβsw
S/N

)p−1

s=0
,

we have a factorisation

NAS = EAS
1 HEAS

2 , H :=
(
eπiαrβs

)p−1

r,s=0
,

where the matrix H ∈ Cp×p is independent of A and B. Altogether, this yields

ûAB = (DAB
2 )−1G−1

∑
S∈SB

CASHEAS
2 ûPS , CAS = diag

(
e∓πi

“
cA

wA
+αr

”
/2
)p−1

r=0

,

(2.28)
where we have used

cS − cB =

{
−w

S

2 S is the left son of B,
wS

2 S is the right son of B.
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2.3.2. Lagrange type basis. Our new approach relies more directly on the
definition (2.19) of the interpolant J ABp g for a function g ∈ ΠB(A). Applied to (2.25)
and in contrast to the variant above, the functions uPS ∈ ΠS(P ), S ∈ SB , are given
by their function values uPS(xPr ), r = 0, . . . , p− 1, at the Chebyshev nodes in P and
we compute the function values uAB(xAr ), r = 0, . . . , p− 1, at Chebyshev nodes in A.
More detailed, we have

uAB(xAr ) =
∑
S∈SB

e2πi
“
cS+wS

2

”
xAr /N

p−1∑
s=0

uPS(xPs )e−2πi
“
cS+wS

2

”
xPs /N · lPSs (xAr ). (2.29)

The Lagrange polynomials are given via the mapping (2.15) by

lPSs (xAr ) =
p−1∏
j=0
j 6=s

z(xAr )− z(xPj )
z(xPs )− z(xPj )

.

Inserting xAr = cA + αrw
A and xPj = cP + αjw

P and using

cA − cP =

{
−w

A

2 A is the left son of P,
wA

2 A is the right son of P,

yields

lPSs (xAr ) =



p−1∏
j=0
j 6=s

e
−πi(αr− 1

2 )/(p−1)−e
−2πi

αj
p−1

e
−2πi αs

p−1−e
−2πi

αj
p−1

A is the left son of P,

p−1∏
j=0
j 6=s

e
−πi(αr+ 1

2 )/(p−1)−e
−2πi

αj
p−1

e
−2πi αs

p−1−e
−2πi

αj
p−1

A is the right son of P.
(2.30)

With the vectors

uPS =
(
uPS(xPr )

)p−1

r=0
, uAB =

(
uAB(xAr )

)p−1

r=0
,

the diagonal matrices

RAS := diag
(

e2πi
“
cS+wS

2

”
xAr /N

)p−1

r=0

, SPS := diag
(

e−2πi
“
cS+wS

2

”
xPs /N

)p−1

s=0

,

and the Lagrange matrix, which depends only on the relation between A and P ,

LA :=
(
lPSs (xAr )

)p−1

r,s=0
, (2.31)

we finally obtain

uAB =
∑
S∈SB

RASLASPSuPS . (2.32)
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2.3.3. Computational complexity. The computation of the coefficients ûAB

from the coefficients ûPS in (2.28) takes O(p2) arithmetic operations, once the two
matrices G−1,H ∈ Cp×p are set up. Similarly, the evaluation of uAB from the
function values uPS in (2.32) takes O(p2) arithmetic operations after precomputing
the two Lagrange matrices LA ∈ Cp×p, A ⊂ P . Using the tensor product structure
of the interpolation operator, the multivariate case clearly takes O(pd+1) arithmetic
operations, see also [11] for an introduction to tensor and n-mode products.

Moreover, the matricesG−1,H,LA ∈ Cp×p are of Cauchy-Vandermonde type and
thus allow for matrix vector multiplications in only Cp log2 p floating point operations,
cf. [7]. However note that p is hardly large enough in order that this consideration
pays off in practice.

2.4. Stability. While implementing the original scheme [17], we found that the
final accuracy of the butterfly sparse FFT is limited far above machine accuracy as
shown in Section 4. Of course, the error of the local approximation and thus of the
butterfly scheme decreases rapidly with increasing local expansion degree p - at least
in precise arithmetic. On the other hand, we show subsequently that the condition
number of the interpolation matrix MAB strongly increases and thus rounding errors
take over for larger p. Alternatively, we prove a weaker increase of the condition
number of the Lagrange matrix LA which seems to suffice for a stable butterfly sparse
FFT. Based on the Lemmata 2.1, 2.2, we are prepared to prove the following bound
on the stability of the local approximation scheme when the monomial type basis is
used.

Theorem 2.7. Let p ∈ N, p ≥ 3, and the local boxes be given as in Section
2.3. The spectral condition number of the interpolation matrix MAB ∈ Cp×p given in
(2.26) fulfils

κ(MAB) ≥


√
p

(
p− 1

2π

)p−1

p ≥ 3, (2.33)

1
√
p

(
2(p− 1)

π

)p−1

p ≥ 3 and odd. (2.34)

Proof. We use the factorisations MAB = DAB
1 GDAB

2 , see (2.27), and

G = DV , D = diag((eπiαr )p−1
r=0), V = (zsr)

p−1
r,s=0 , zr := e−2πi αrp−1 .

Noting, that the norm of all the diagonal matrices and their inverses is equal to one,
it suffices to analyse the Vandermonde matrix V . We have

‖V ‖2 = sup
x∈Cp\{0}

‖V x‖2
‖x‖2

≥ ‖V e0‖2
‖e0‖2

=
√
p.

for the zeroth unit vector e0 = (1, 0, . . . , 0)> ∈ Cp and bound the norm ‖V −1‖2 by a
similar technique.

Solving the linear system V f = e0 is equivalent to the polynomial interpolation
problem

q : C→ C, q(z) =
p−1∑
s=0

fsz
s, such that q(zr) = δr,0 for r = 0, . . . , p− 1. (2.35)
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In terms of the Lagrange polynomials to the nodes {zr}p−1
r=0, its solution is given by

q(z) = L̃0(z) =
p−1∏
r=1

z − zr
z0 − zr

=

(
p−1∏
r=1

1
z0 − zr

)
zp−1 + . . . .

and we consider the leading coefficient fp−1 =
p−1∏
r=1

1
z0−zr in the monomial expansion

(2.35). Applying Lemma 2.1, estimates (2.3) and (2.4), yields

|z0 − zr|2 = 2− 2 cos
(

π

p− 1

(
cos

π

2p
− cos

2r + 1
2p

π

))
≤ 2− 2 cos

2π
p− 1

≤ 2− 2
(

1− 4π2

2(p− 1)2

)
=
(

2π
p− 1

)2

.

Hence, we obtain

‖V −1‖2 ≥ ‖V −1e0‖2 ≥ |fp−1| =
p−1∏
r=1

1
|z0 − zr|

≥
(
p− 1

2π

)p−1

and thus the assertion (2.33).
For p = 2n+ 1, n ∈ N, we consider the linear system V f = en with the n-th unit

vector, which is equivalent to the interpolation problem

q : C→ C, q(z) =
p−1∑
s=0

fsz
s, such that q(zr) = δn,r for r = 0, . . . , p− 1.

Noting zn = 1 and analogously to the above consideration, we have

q(z) = L̃n(z) =
p−1∏
k=0
k 6=n

z − zk
1− zk

= fp−1z
p−1 + . . . , fp−1 =

p−1∏
k=0
k 6=n

1
1− zk

.

Using Lemma 2.1 (2.4) yields

|1− zk|2 = 2− 2 cos
π

p− 1
tk ≤

π2

(p− 1)2
t2k

and together with Lemma 2.2 (2.7) in

‖V −1‖2 ≥ |fp−1| ≥
(
p− 1
π

)p−1 p−1∏
k=0
k 6=n

|tk|−1 =
2p−1

p

(
p− 1
π

)p−1

the assertion (2.34) follows.
The condition number of the matrix NAS in Section 2.3.1 can be analysed in

the same way to yield κ(NAS) ≈ 2p−1κ(MAB). In contrast to the lower bound
on the conditioning of the original method, we obtain an upper bound for the local
approximation scheme when the Lagrange type basis, cf. Section 2.3.2, is used.

Theorem 2.8. Under the assumptions of Theorem 2.7, the spectral condition
number of the Lagrange interpolation matrix LA ∈ Cp×p given in (2.31) fulfils

κ(LA) ≤ Kp

√
2p · 34p

4
≤
√

2p
4
· 6p+1.
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Proof. The Lagrange functions (2.30) are independent of the box A, up to its
relation to the father box P . Setting xr = αr ∓ 1

2 in (2.30) yields

|lPSs (xAr )|2 =
p−1∏
j=0
j 6=s

1− cos
(

2π
p−1 (αj − xr

2 )
)

1− cos
(

2π
p−1 (αj − αs)

) .
Since xr ∈ [−1, 1] and thus αj − xr

2 ∈ [−1, 1], we can follow the ideas in the proof of
Lemma 2.3 to obtain the relation

≤ Kp

p−1∏
j=0
j 6=s

(
xr − tj
ts − tj

)2

= Kp · (Ls(xr))2
.

Due to inequality (2.8) in Lemma 2.2, this yields

‖LA‖2F =
p−1∑
r=0

p−1∑
s=0

|lPSs (xAr )|2 ≤ Kp

p−1∑
r=0

max
x∈[−1,1]

p−1∑
s=0

(Ls(x))2 ≤ 2pKp. (2.36)

In view of the related polynomial interpolation problem on the complex unit circle
and by changing the basis of the Lagrange polynomials lPSs to lASs , the entries of the
inverse Lagrange matrix can be written as

((
LA
)−1

)
r,s

= lASs (xPr ) =



p−1∏
j=0
j 6=s

e
−πi(2αr+ 1

2 )/(p−1)−e
−πi

αj
p−1

e
−πi αs

p−1−e
−πi

αj
p−1

A is the left son of P,

p−1∏
j=0
j 6=s

e
−πi(2αr− 1

2 )/(p−1)−e
−πi

αj
p−1

e
−πi αs

p−1−e
−πi

αj
p−1

A is the right son of P.

Analogously to the first part of the proof, we set xr = 2αr ± 1
2 ⊂

[
− 3

2 ,
3
2

]
and use

1/2(αj − xr) ∈ [−1, 1] to use again the ideas in proof of Lemma 2.3. Together with
2xr ∈ [−3, 3], inequality (2.10) in Lemma 2.2 yields

|lASs (xPr )|2 =
p−1∏
j=0
j 6=s

1− cos
(

2π
p−1 (αj2 −

xr
2 )
)

1− cos
(

2π
p−1 (αj2 −

αs
2 )
) ≤ Kp · (Ls(2xr))2 ≤ 34pKp

16p2
.

Combining (2.36) and the slightly simpler estimate∥∥∥∥(LA)−1
∥∥∥∥2

F

=
p−1∑
r=0

p−1∑
s=0

|lASs (xPr )|2 ≤ 34pKp

16
,

the assertion follows by bounding the spectral norm by the Frobenius norm. Setting
x = 2π

p−1 in Lemma 2.1 (2.6) finally yields Kp

√
34 ≤ 62.

3. Butterfly scheme. As pointed out in the introduction, we aim to compute

uj = u(xj) =
M2∑
k=1

ûke2πiξkxj/N , j = 1, . . . ,M1, (3.1)
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for a space dimension d ∈ N, a nonharmonic bandwidth N = 2L, L ∈ N, a set of
frequencies T̃ = {ξk ∈ [0, N ]d : k = 1, . . . ,M2}, a set of Fourier coefficients ûk ∈ C,
k = 1, . . . ,M2, and a set of evaluation nodes X̃ = {xj ∈ [0, N ]d : j = 1, . . . ,M1}. For
d = 1 and no restrictions on the sampling sets T̃ and X̃, the following considerations
just give a slightly more expensive variant of the FFT for nonequispaced data in space
and frequency domain [6, 9], but we include this case for notational convenience.
In case d ≥ 2, M1 = M2 = Nd−1, and well distributed sampling sets on smooth
d − 1 dimensional manifolds, the following dyadic decompositions of the sampling
sets remain sparse. The butterfly graph, which represents the admissible pairs where
computations are performed, remains sparse as well and a favourable complexity can
be achieved.

In the one dimensional case, we consider T := X := [0, N ] and the dyadic decom-
position

Xl,m :=
[
N/2lm,N/2l(m+ 1)

)
for m = 0, . . . , 2l − 1,

TL−l,n :=
[
N/2L−ln,N/2L−l(n+ 1)

)
for n = 0, . . . , 2L−l − 1,

for l = 0, . . . , L, where the level in the butterfly scheme and locations are denoted by
l and m, n, respectively. Moreover note that we always include the point N in the
rightmost sets Xl,2l−1 and Tl,2l−1, l = 0, . . . , L. The decomposition of the interval
X = [0, N ] is illustrated in Figure 3.1, all in the sense of Theorem 2.6 admissible pairs
(Xl,m, TL−l,n) are shown in Figure 3.2.

0 N

0 N/2 N

0 N/4 N/2 3N/4 N

0 N/8 N/4 3N/8 N/2 5N/8 3N/4 7N/8 N

Level l = 0
X00

Level l = 1
X10 X11

Level l = 2
X20 X21 X22 X23

Level l = 3
X30 X31 X32 X33 X34 X35 X36 X37

Figure 3.1. Dyadic decomposition of X.

X

T

(a) Level l = 0.

X

T

(b) Level l = 1.

X

T

(c) Level l = 2.

X

T

(d) Level l = 3.

Figure 3.2. Admissible pairs of X = T = [0, 8].

If we represent all intervals of the two dyadic decompositions by a node in a graph
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and have edges for inclusions, we obtain two binary trees. Furthermore, all admissible
pairs (Xl,m, TL−l,n) are nodes in the butterfly graph, they are given as combinations
of nodes in the l-th level of the X-tree and the (L − l)-th level in the T -tree. An
edge is set if and only if the nodes in the X-tree and in the T -tree are connected, see
Figure 3.3.

X00

X10 X11

X20 X21 X22 X23

(a) X-tree.

T00

T10 T11

T20 T21 T22 T23

(b) T -tree.

X00, T20 X00, T21 X00, T22 X00, T23

X10, T10 X10, T11 X11, T10 X11, T11

X20, T00 X21, T00 X22, T00 X23, T00

(c) Butterfly graph.

Figure 3.3. Trees and butterfly graph for N = 4.

For spatial dimension d ≥ 2, we have T := X := [0, N ]d and decompose dyadically
for levels l = 0, . . . , L into the boxes

Xl,m := Xl,m1 × . . .×Xl,md , TL−l,n := TL−l,n1 × . . .× TL−l,nd ,

with the location parameters m := (m1, . . . ,md), 0 ≤ m1, . . . ,md ≤ 2l − 1, and
n := (n1, . . . , nd), 0 ≤ n1, . . . , nd ≤ 2L−l − 1.

The butterfly scheme in Algorithm 1 now traverses the butterfly graph top down.
Starting from level l = 0 and local sums over frequencies, we define in each level ap-
proximations from its two predecessors. Level by level, they include more frequencies
and are valid in smaller spatial boxes. The final approximation is a function piecewise
defined in the smallest X-boxes.

3.1. Error analysis. In contrast to other analysis-based fast algorithms, the
butterfly scheme uses a sequence of approximations and the local expansion degree
depends not only on the target accuracy ε > 0 but also mildly on the nonharmonic
bandwidth N . This behaviour is illustrated also numerically in Section 4.2.

Theorem 3.1. Let L ∈ N, N = 2L, T,X ⊂ [0, N ]d, and p ∈ N, p ≥ 5, then the
approximation (3.4) to the function (3.1) obeys the error estimate

‖u− ũ‖C(X) ≤
(Cp + 1)(Cd(L+1)

p − 1)
Cp − 1

cp‖û‖1.

Proof. Define for all levels l = 0, . . . , L and the frequency indices n ∈ Nd0, ‖n‖∞ <
2L−l the local sums

uTL−l,n :=
∑

ξk∈TL−l,n∩eT
ûke2πiξk·x/N

and for the spatial indices m ∈ Nd0, ‖m‖∞ < 2l, the error term

El,m :=
∑

n∈Nd0 ;‖n‖∞<2L−l

‖uTL−l,n − uXl,mTL−l,n‖C(Xl,m),
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Algorithm 1 Butterfly scheme.
Input: d, L,M1,M2, p ∈ N, p ≥ 2, N = 2L,

ûk ∈ C, ξk ∈ [0, N ]d, k = 1, . . . ,M2,
xj ∈ [0, N ]d, j = 1, . . . ,M1.

for n1, . . . , nd = 0, . . . , 2L − 1 do

uTL,n(x) :=
∑

ξk∈TL,n∩eT
ûke2πiξk·x/N (3.2)

uX0,0TL,n := JX0,0TL,n
p uTL,n

end for

for l = 1, . . . , L do
for m1, . . . ,md = 0, . . . , 2l − 1 and n1, . . . , nd = 0, . . . , 2L−l − 1 do

uXl,mTL−l,n := JXl,mTL−l,n
p

∑
k∈{0,1}d

uXl−1,bm/2cTL−l+1,2n+k (3.3)

end for

end for

for j = 1, . . . ,M1 do

m := bxjc
ũ(xj) := uXL,mT0,0(xj) (3.4)

end for

Output: Approximate function values ũ(xj), j = 1, . . . ,M1.

which by definition fulfils ‖u − ũ‖C(X) = maxm∈Nd0 ,‖m‖∞<2L EL,m. Using Theorem
2.6 and the triangle inequality, this quantity can be bounded for the zeroth level by

E0,0 =
∑

n∈Nd0 ;‖n‖∞<2L

‖uTL,n − JX0,0TL,n
p uTL,n‖C(X0,0)

≤
(1 + Cp)(Cdp − 1)

Cp − 1
cp

∑
n∈Nd0 ;‖n‖∞<2L

∑
ξk∈TL,n∩eT

|ûk|

≤
(1 + Cp)(Cdp − 1)

Cp − 1
cp‖û‖1.

For l > 0, adding and subtracting the term JXl,mTL−l,n
p uTL−l,n yields

El,m =
∑
n∈Nd0

‖n‖∞<2L−l

‖uTL−l,n − JXl,mTL−l,n
p uTL−l,n

+ JXl,mTL−l,n
p uTL−l,n − uXl,mTL−l,n‖C(Xl,m).
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Using the triangle inequality, the first norm can be bounded as for the zeroth level,
and we proceed by applying equation (3.3), factoring out the interpolation operator,
using the dyadic decomposition TL−l,n = ∪k∈{0,1}dTL−l+1,2n+k, and the relation
Xl,m ⊂ Xl−1,bm/2c to obtain∑

n∈Nd0
‖n‖∞<2L−l

‖JXl,mTL−l,n
p uTL−l,n − uXl,mTL−l,n‖C(Xl,m)

≤
∑
n∈Nd0

‖n‖∞<2L−l

∥∥∥JXl,mTL−l,n
p

∥∥∥ ∑
k∈{0,1}d

∥∥uTL−l+1,2n+k − uXl−1,bm/2cTL−l+1,2n+k
∥∥
C(Xl−1,bm

2 c
)

≤ CdpEl−1,bm
2 c.

Hence, we inductively find for m ∈ Nd0, ‖m‖∞ < 2L, the relation

EL,m ≤
(1 + Cp)(Cdp − 1)

Cp − 1
cp‖û‖1 + CdpEL−1,bm

2 c

≤
(1 + Cp)(Cdp − 1)

Cp − 1
cp ·

C
d(L+1)
p − 1
Cdp − 1

‖f̂‖1,

which proves the assertion.
Corollary 3.2. Under the assumptions of Theorem 3.1, let for given ε ∈ (0, 1]

the expansion degree p ∈ N fulfil

p ≥ max{10, 2| log ε|, 2d(L+ 1)},

then ‖u− ũ‖C(X) ≤ ε‖û‖1.
Proof. Direct calculation shows for p ≥ 10 the relation

p ≥ 1 + π
√

eCp.

Together with p ≥ 2d(L+ 1) this yields

log
p− 1
π
− d(L+ 1)

p
logCp ≥

1
2

and multiplication by p ≥ 2| log ε| finally gives the bound

Cd(L+1)
p

(
π

p− 1

)p
≤ ε

from which the assertion follows by Theorem 3.1.

3.2. Computational complexity. Again, we start with the univariate case
d = 1. For the level l = 0, the local sums uTL,n in (3.2) are evaluated at Chebychev
nodes xXr , r = 0, . . . , p−1, and this takes O(pM2) floating point operations. For each
level l = 0, . . . , L, we have to apply the interpolation operator N = 2L times and a
single application takes O(p2) floating point operations, cf. Section 2.3.3. Finally, we
evaluate the function ũ(xj) at all sampling nodes, which takes O(pM1) floating point
operations for the original approach [17] and the approach in Section 2.3.2 with pre-
computation of the Lagrange functions at the evaluation nodes. Without such precom-
putations, a straightforward evaluation of the Lagrange functions leads to O(p2M1)
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floating point operations for this step. Assuming M1,M2 = O(N) and a target accu-
racy ε > 0, this sums up to the total computational costs O(N logN(| log ε|+logN)2).

Generalising to d ≥ 2, we assume that the sets T̃ , X̃ ⊂ [0, N ]d and their dyadic
subdivisions are sparse in the sense

|{m ∈ Nd0 : m1, . . . ,md ≤ 2l − 1, X̃ ∩Xl,m 6= ∅}| ≤ C2(d−1)l,

|{n ∈ Nd0 : n1, . . . , nd ≤ 2L−l − 1, T̃ ∩ TL−l,m 6= ∅}| ≤ C2(d−1)(L−l)

for some absolute constant C ∈ R. In particular, M1 = |X̃| and M2 = |T̃ | fulfil
M1,M2 = O(Nd−1) and the above condition is satisfied if the sets lie on some smooth
(d− 1)-dimensional manifold in [0, N ]d, see also Figure [17, Fig. 5]. Under this spar-
sity assumption, the number of admissible pairs on which we need to compute is
O(Nd−1) in each level of the butterfly scheme and a single application of the inter-
polation operator takes O(pd+1) floating point operations. Finally, the evaluation of
the function ũ(xj) at all sampling nodes takes O(pdM1) floating point operations in
all approaches, in case of on-the-fly evaluation of the Lagrange functions in tensor
product form the costs are amortized. In total, this sums up to computational costs
O(N logN(| log ε|+ logN)d+1). The exponent d+ 1 of the last term can be decreased
to d by using log cp ≤ −Cp log p and the techniques in [7]. A similar improvement
might be possible by reducing the pd dimensional ansatz to one which lives on the
d− 1 dimensional manifold.

4. Numerical experiments. The implementation of the butterfly sparse FFT
is realised in MATLAB 7.10.0 (R2010a) for the dimensions d = 1, 2, 3, 4. We use one
node of a Dell PowerEdge R900, 96GByte, 2.4GHz Intel Xeon 7450, CentOS5.5, for
all numerical experiments.

4.1. Local accuracy and stability. The first two experiments are dedicated to
the approximation in one pair of admissible boxes. Let the nonharmonic bandwidth
N = 2L, L = 10, 14, the level l = 5, and the boxes A = [0, 2l], B = [0, 2L−l] be given.
Draw nodes xj ∈ A, j = 1, . . . ,M1, M1 = N , and ξk ∈ B, k = 1, . . . ,M2, M2 = N , at
random from the uniform distribution and define the Fourier matrix

F :=
(

e2πiξk·xj/N
)M1,M2

j=1,k=1
.

This matrix is approximately of low rank and we consider the expansions from Sections
2.3.1 and 2.3.2,

F̃ := FA(MAB)−1FB or F̃ := L̃
A
FB

with the auxiliary matrices

FA :=
(

e2πiξBs xj/N
)M1,p−1

j=1,s=0
, FB :=

(
e2πiξkx

A
r /N

)p−1,M2

r=0,k=1
,

L̃
A

:=
(

e2πi
“
cB+wB

2

”
xj/N lABr (xj)e

−2πi
“
cB+wB

2

”
xAr /N

)M1,p−1

j=1,r=0

,

respectively. In both cases, Theorem 2.6 assures

ε1 := max
f̂∈CM2

‖f̂‖1=1

∥∥∥F f̂ − F̃ f̂∥∥∥
∞

= max
j=1,...,M1
k=1,...,M2

∣∣∣F j,k − F̃ j,k∣∣∣ ≤ cp =
1
πp

(
π

p− 1

)p
.
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We compare the quantity ε1 for both realisations and for the original approach [17] in
Figure 4.1. The original scheme differs from the variant in Section 2.3.1 in the choice
of interpolation nodes in xAr ∈ A, where we use zeros of Chebychev polynomials
instead of extrema, and in the choice of the ‘equivalent sources’ ξBs ∈ B, where we use
equidistant points instead of Chebyshev extrema. In all three cases, the error decays
exponentially with increasing expansion degree p, as predicted by Theorem 2.6 for
the equidistant points ξBs ∈ B. However note that both monomial type approaches
achieve only an accuracy ε1 ≈ 10−8 and suffer from severe instabilities for values
p ≥ 9 which is well predicted by the quantity κ(MAB)µ, where µ ≈ 2 · 10−16 denotes
the machine precision and κ the spectral condition number.

The second experiment analyses the stability of the monomial and the Lagrange
type approaches as theoretically discussed in Section 2.4. Figure 4.2 shows the growth
of the condition numbers of the matrices MAB , LA ∈ Cp×p, and lower and upper
bounds, cf. Theorems 2.7 and 2.8.

(a) N = 210 and l = 5. (b) N = 214 and l = 5.

Figure 4.1. Relative error ε1 with respect to the local expansion degree p for the realisation via
Lagrange functions, cf. Section 2.3.2, and monomials, cf. Section 2.3.1 and [17].

(a) κ(MAB) and lower bounds. (b) κ(LA) and upper bounds

Figure 4.2. Condition number of the Vandermonde matrix MAB ∈ Cp×p, cf. Section 2.3.1
and [17], and the Lagrange matrix LA ∈ Cp×p, cf. Section 2.3.2, with respect to the local expansion
degree p.
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4.2. Accuracy of the Butterfly scheme. Regarding the accuracy of the whole
algorithm, we draw coefficients ûk ∈ [− 1

2 ,
1
2 ]×[− 1

2 ,
1
2 ]i, k = 1, . . . ,M2, at random from

the uniform distribution and consider the relative error

ε2 := max
j=1,...,M1

|u(xj)− ũ(xj)|
‖û‖1

≤ (Cp + 1)(Cd(L+1)
p − 1)

Cp − 1
cp,

where u, ũ : [0, N ]d → C denote the function to evaluate (3.1) and its approximation
(3.4). We compare the quantity ε2 and the upper bound from Theorem 3.1 for the
monomial and the Lagrange type realisation in Figure 4.3 (top). In these two tests
as well as further experiments for d = 2, d = 3, and d = 4, the total error decays
exponentially with p but is again limited for the monomial type realisation. In all
cases, a least squares fit reveals a numerical error decay ε2 ≈ C · 16−p, where the
constant C seems to depend neither on d nor L.

(a) d = 1, N = 210. (b) d = 1, N = 214.

(c) d = 2, N = 210. (d) d = 2, N = 214.

Figure 4.3. Relative error ε2 with respect to the local expansion degree p for the realisation via
Lagrange functions, cf. Section 2.3.2, and monomials, cf. Section 2.3.1.

Our second experiment touches the question whether the error really increases for
increasing nonharmonic bandwidth as predicted by Corollary 3.2, i.e., ε2 ≈ Cp,dN .
While randomly drawn coefficients ûk ∈ C, as in the previous test, did not show this
increase, using constant coefficients ûk = 1 support a weak increase ε2 ≈ Cp,dL =
Cp,d log2N , cf. in Figure 4.4.
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(a) d = 1, ûk = 1 (b) Logarithmic scale.

Figure 4.4. Relative error ε2 with respect to the nonharmonic bandwidth L.

4.3. Computational times. Finally, we compare the computational times,
measured by the MATLAB functions tic and toc, of the naive evaluation (1.1)
and Algorithm 1 for fixed spatial dimensions d = 1, 2, 3, 4, fixed local expansion
degrees p = 4, 8, and with respect to increasing nonharmonic bandwidth N . We
draw coefficients ûk ∈ [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ]i and source and target nodes ξk,xj ∈ [0, N ]d,

k = 1, . . . ,M2, j = 1, . . . ,M1, at random from the uniform distribution (on the
submanifold). As discussed in Section 3.2, we consider three realisations of the inter-
polation operator, the monomial type basis, cf. Section 2.3.1, the Lagrange type basis,
cf. Section 2.3.2, and the Lagrange type basis with precomputation of the Lagrange
functions at the final evaluation nodes, denoted subsequently by Section 2.3.2∗.

Figure 4.5 shows the measured times for d = 1 and M1 = M2 = N sampling nodes
in ξk,xj ∈ [0, N ]. The break even with the naive method occurs at N = 32 and we
see some increase for a larger local expansion degree p = 8 when no precomputation
is done. Figure 4.6 gives the results for d = 2, 3, 4 with M1 = M2 = Nd−1 sampling
nodes on ellipses, spheres, and hyperplanes, respectively. Precomputation of the La-
grange functions in the last step of the algorithm does not gain any improvement
here. Finally note that the break even with the naive algorithm occurs at a suitable
problem size but a further reduction in absolute computing time is necessary for real
applications.

5. Summary. Recently, the butterfly approximation scheme has been used for
the development of a fast Fourier transform for sparse data [1, 17] which takes
O(Nd−1 logNpd+1) floating point operations for d ≥ 2, M1 = M2 = O(Nd−1), and
well distributed sampling sets T̃ , X̃ on smooth d − 1 dimensional manifolds, and a
local expansion degree p ∈ N.

We presented a rigorous error analysis of this algorithm, showing that the local
expansion degree grows at most like p ≈ | log ε| + logN and thus gave a complexity
estimate for the scheme. Moreover, we showed theoretically as well as numerically,
that the original scheme becomes numerically unstable if a large local expansion de-
gree is used and developed a stable variant by representing all approximations in a
Lagrange type basis.
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(a) d = 1, p = 4. (b) d = 1, p = 8.

Figure 4.5. Computational time of the butterfly (nonsparse) FFT with respect to the nonhar-
monic bandwidth and problem size N = M1 = M2.
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