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We prove lower bounds for the smallest singular value of rectangular, multivari-
ate Vandermonde matrices with nodes on the complex unit circle. The nodes are
“off the grid”, groups of nodes cluster, and the studied minimal singular value is
bounded below by the product of inverted distances of a node to all other nodes
in the specific cluster. By providing also upper bounds for the smallest singular
value, this completely settles the univariate case and pairs of nodes in the mul-
tivariate case, both including reasonable sharp constants. For larger clusters, we
show that the smallest singular value depends also on the geometric configuration
within a cluster.
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1 Introduction

Vandermonde matrices appear e.g. in the stability analysis of super-resolution algorithms like
Prony’s method [6, 12], the matrix pencil method [11, 19], the ESPRIT algorithm [22, 21, 16],
and the MUSIC algorithm [23, 17]. We are interested in the case of nodes on the complex
unit circle and a large polynomial degree, the matrices then generalize the classical discrete
Fourier matrices to non-equispaced nodes and the involved polynomial degree is also called
bandwidth. If all nodes are well-separated, bounds on the condition number are established
for example in [5, 14, 19, 2, 8] for the univariate case and in [14, 12] at least partially for the
multivariate case. For node sets with distances of which some are below the inverse bandwidth,
the behavior of the smallest singular value is subject of current research. The seminal paper
[9] coined the term (inverse) super-resolution factor for the product of the bandwidth and the
minimal separation of the nodes. For M nodes on a grid, the results in [9, 7] imply that the
smallest singular value is at most as small as the inverse super-resolution factor raised to the
power of M − 1 if the super-resolution factor is greater than 1. More recently, the practically
relevant situation of clustered nodes was studied in [20, 1, 15, 3, 13, 4, 8]. In the univariate
case and for different setups, all of these refinements are able to replace the exponent M − 1
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by the smaller number m − 1, where m denotes the number of nodes that are in the largest
cluster of nodes.

Here, we refine the proof technique developed in the second version of [15] and extend
it to arbitrary dimensions. In contrast to [15], we only use the information on the biggest
cluster size, minimal separation between clusters and a the worst case cluster complexity
(or a minimal separation between nodes) instead of taking the structure of each cluster into
account. In summary, our contributions are:

i) a refined analysis of the univariate case, cf. [15], eliminating the dependence on the
total number of nodes, weakening a technical condition on the cluster separation, and
improving constants, mainly by

a) a geometric packing argument and

b) an improved estimate of Dirichlet kernels and Lagrange-like basis functions;

ii) a multidimensional generalization, including

a) a quantitative estimate for the well-separated case,

b) a sharp estimate for pair clusters in higher dimensions, and

c) an example on the limitations for larger clusters in higher dimensions.

The outline of this paper is as follows: Section 2 fixes notation, states the problem and
gives some definitions. Furthermore, we generalize the so-called robust duality lemma from
the second version of [15] to the multivariate case. In Section 3, we introduce some auxiliary
functions which are used to prove our main results in Section 4. Additionally, we give examples
with specified parameters, present implications of our result for special node configurations
like pair clusters and well separated nodes, and compare them with existing results. In Section
5, upper bounds on the smallest singular value for the univariate case and for pair clusters
in higher dimensions are presented - these match the lower bounds from our main theorem.
Furthermore, an example of a triple cluster in two dimensions is given which shows that
geometric properties beyond pairwise distances are needed for understanding the multivariate
case. Finally, in Section 6 numerical experiments are presented that support statements and
comparisons from preceding sections.

2 Preliminaries

Definition 2.1 (Setting). We denote the component of a vector by bracketing and setting a
subscript, unless its components are defined differently. Let d ∈ N be a given dimension and
Ω := {t1, . . . , tM} ⊂ [0, 1)d a set of points. The corresponding nodes are given by zj := e2πitj ∈
Td, j = 1, . . . ,M , where T := {z ∈ C : |z| = 1} denotes the complex unit circle. We identify
the unit interval with the unit circle and therefore, we do not make a difference between the
tj and zj and call them both nodes. Throughout the paper, ‖·‖2 denotes the euclidean norm
for vectors and also its induced norm for matrices, and analogously ‖·‖∞ the max-norm. Let
n ∈ N be a degree, set N := n+1 and assume M < Nd. We are interested in the multivariate,
rectangular Vandermonde matrix

A := A(Ω, n) :=
(
zαj
)

j=1,...,M
α∈Nd0, ‖α‖∞≤n

∈ CM×N
d
, (2.1)
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and its smallest singular value

σmin(A) := min
v∈CM
‖v‖2=1

‖A∗v‖2 .

The following lemma builds the core of the proof technique developed in the second version
of [15] which we adapt here to the multivariate setting.

Lemma 2.2 (Robust duality, cf. [15, v2, Prop. 2]). Let Ω and A be given as in Definition 2.1.
If for any unit norm vector v = (v1, . . . , vM )> ∈ CM , and ε = (ε1, . . . , εM )> ∈ CMwith ‖ε‖2 ≤
1, there exists a trigonometric polynomial of max-degree at most n ∈ N, i.e.,

f ∈ P(n) :=

g : Td → C : g(t) =
∑

α∈Nd0,‖α‖∞≤n

ĝαe2πiα·t, ĝα ∈ C

 ,

such that f(tj) = vj + εj for each j = 1, . . . ,M , then

‖A∗v‖2 ≥ (1− ‖ε‖2) ‖f‖−1
L2(Td) .

Proof. Define the discrete measure µ :=
∑M

j=1 vjδtj . Its Fourier coefficients are given by

µ̂(α) =

∫
Td

e−2πit·α dµ(t) =
M∑
j=1

vjz
−α
j = (A∗v)α , α ∈ Nd0, ‖α‖∞ ≤ n.

On the one hand, using the interpolation property of f and the lower triangular inequality of
the absolute value, we have∣∣∣∣∫

Td
f dµ

∣∣∣∣ =

∣∣∣∣∣∣
M∑
j=1

f(tj)vj

∣∣∣∣∣∣ =

∣∣∣∣∣∣‖v‖22 +
M∑
j=1

εjvj

∣∣∣∣∣∣ ≥ ‖v‖22 − ‖v‖2 ‖ε‖2 = (1− ‖ε‖2),

and on the other hand, using f ∈ P(n), the Cauchy–Schwarz inequality and Parseval’s iden-
tity, we have∣∣∣∣∫

Td
f dµ

∣∣∣∣ =

∣∣∣∣∣∣
∑

α∈Nd0,‖α‖∞≤n

f̂αµ̂(α)

∣∣∣∣∣∣ ≤
∥∥∥f̂∥∥∥

2
‖A∗v‖2 = ‖f‖L2(Td) ‖A

∗v‖2 .

The advantage of that lemma is, if v ∈ CM is a unit norm vector such that σmin(A) =
‖A∗v‖2, it suffices to construct a function f ∈ P(n) almost interpolating the values of v in
order to provide a lower bound.

The following definition is similar to the ‘localized clumps’ model from the second version
of [15]. We did some renaming in terms of [3] and use a normalization by N rather than n.

Definition 2.3 (Geometry of nodes). The wrap-around distance between two nodes t, t′ ∈
[0, 1)d is defined by ∣∣t− t′∣∣Td := min

r∈Zd

∥∥t− t′ + r∥∥∞ .
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i) A subset of nodes is called cluster if it is contained in a cube of length 1/N . For two
clusters Λ′,Λ′′ ⊂ Ω, we define

dist(Λ′,Λ′′) := min{
∣∣t′ − t′′∣∣Td : t′ ∈ Λ′, t′′ ∈ Λ′′}.

ii) The node set Ω is called a clustered node configuration with L clusters if it can be
written as

Ω =

L⋃
l=1

Λl,

where the Λl are clusters and the (normalized) minimal cluster separation ρ fulfills

ρ := N min
1≤l<l′≤L

dist(Λl,Λl′) > 1.

We order |Λ1| ≥ |Λ2| ≥ . . . ≥ |ΛL| and denote the cardinality of the biggest cluster
by λ := |Λ1|. In passing, we note that the node set Ω is called well separated with
normalized separation ρ if λ = 1. Moreover, we define the partitioning of Td into shells
by

Jm := Jm(Ω, N, ρ) :=
{
t ∈ Td : mρ ≤ N |t|Td < (m+ 1)ρ

}
, m = 0, . . . ,

⌊
N

2ρ

⌋
.

iii) The cluster complexity is defined by

C := C(Ω, N) := max
j=1,...,M

∏
t′∈Ω: 0<|tj−t′|Td≤1/N

1

N |tj − t′|Td

and finally, we define the (normalized) minimal separation

τ := N min
1≤j<j′≤M

∣∣tj − tj′∣∣Td .

Figure 2.1: Left: Clustered node configuration and partitioning into shells for d = 2; right: a
cluster which maximizes C for d = 1.
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Remark 2.4. (Geometry of nodes) With the notation of Definition 2.3, we note that

i) the inequality sin(x) ≥ 2x/π for 0 ≤ x ≤ π/2 implies∣∣z − z′∣∣ = 2 sin(π
∣∣t− t′∣∣T) ≥ 4

∣∣t− t′∣∣T , z := e2πit, z′ := e2πit′ ∈ T. (2.2)

A higher order approximation is given in the second version of [15],

∣∣z − z′∣∣ ≥ 2π

(
1−

π2 |t− t′|2T
3

)1/2 ∣∣t− t′∣∣T . (2.3)

ii) A necessary condition on N for the existence of a clustered node configuration with L
clusters is Lρd ≤ Nd, with equality if and only if all nodes are equispaced. Similarly,
if N ≥ L1/d(ρ + 1), then equispaced cluster with arbitrary node configuration within
each cluster exist. Moreover, the cluster separation ρ needs to scale at least linearly in
the biggest cluster size λ. If on the contrary, ρ < λ/4 and d = 1 for simplicity of the
argument, then let λ nodes form a cluster (length at most 1/N) and place one node as
far as possible away. With fixed N , we have 2ρ = N − 1 and therefore, ρ < λ/4 is
equivalent to N ≤ M/2 + 1/2 and thus rank(A) ≤ N < M . On the other hand, ρ > λ
already implies N ≥ L(ρ+ 1) ≥M .

Finally note, that the packing argument in [14, Lemma 4.5] yields

|Jm ∩ Ω| ≤ 2d
(

2d − 1
)
md−1λ,

see also Figure 2.1 (left).

iii) The cluster complexity can be upper bounded by the normalized minimal separation as
follows. For d ∈ N, we have C ≤ τ1−λ and equality for λ = 1 and λ = 2. Refined for
d = 1, it is easy to see that the cluster complexity is maximized by an equispaced cluster
with λ nodes separated by τ/N and taking distances from the center node, see Figure
2.1 (right). By logarithmic convexity, direct calculation, and Stirling’s approximation,
we thus have

C ≤ 1

τλ−1

(⌊
λ− 1

2

⌋
! ·
⌈
λ− 1

2

⌉
!

)−1

≤ 1

τλ−1Γ
(
λ+1

2

)2 ≤ (2e)λ−1

λλ
· 1

τλ−1
(2.4)

and similarly

max
Ω
C =

1

τλ−1

(⌊
λ− 1

2

⌋
! ·
⌈
λ− 1

2

⌉
!

)−1

≥ (2e)λ−1

λλ+1
· 1

τλ−1
, (2.5)

where the maximum is taken over all clustered node configurations with normalized
minimal separation τ and the largest cluster containing λ nodes.

3 Auxiliary functions

Lemma 3.1 (Modified Dirichlet kernel). For m,β ∈ N the modified Dirichlet kernel is defined
as dm : [0, 1)→ C,

dm(t) :=
1

m+ 1

m∑
k=0

e2πikt =

{
1, t = 0,
eπimt

m+1 ·
sin(π(m+1)t)

(sin(πt)) , t 6= 0.
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We define the powers of the multivariate modified Dirichlet kernel by

dβm : [0, 1)d → C, dβm(t) :=

(
d∏
`=1

dm((t)`)

)β
∈ P(mβ).

If m ≥ β and t ∈ Td \ {0}, then

i) |dm(t)| ≤ dm(0) = 1,

ii) |dm(t)| ≤ 1
2(m+1)|t|Td

,

iii)
∥∥∥dβm∥∥∥2

L2(Td)
≤ 1

(m+1)dβd/2
,

iv)

∣∣∣∣〈dβm, dβm(· − t)
〉
L2(Td)

∣∣∣∣ ≤ 1
2(m+1)dβ(d−1)/2 · 1

(m+1)β |t|β
Td

.

Proof. First, note that

|dm(t)| ≤

(
1

m+ 1

m∑
k=0

∣∣∣e2πikt
∣∣∣)d = 1 = dm(0)

and the point-wise bound follows in the univariate case by

|dm(t)| = 1

m+ 1

∣∣∣∣sin(π(m+ 1)t)

sin(πt)

∣∣∣∣ ≤ 1

(m+ 1) |sin(πt)|
≤ 1

2(m+ 1) |t|T
.

Second, in the multivariate case, setting t := |t|Td , and using i) and the univariate bound
yield

|dm(t)| =
d∏
`=1

|dm((t)`)| ≤ |dm(t)| ≤ 1

2(m+ 1) |t|T
=

1

2(m+ 1) |t|Td
.

Note that ‖dm‖2L2(Td) = ‖dm‖2dL2(T) and therefore, the third assertion is proven for the
univariate case as follows. For m ≥ β, Parseval’s identity and direct calculation show

‖dm‖2L2(T) =
1

m+ 1
,
∥∥d2

m

∥∥2

L2(T)
=

1

m+ 1

[
2

3
+

1

3(m+ 1)2

]
≤ 1

m+ 1
· 19

27
≤ 1

m+ 1
· 1√

2
,

∥∥d3
m

∥∥2

L2(T)
=

1

m+ 1

[
11

20
+

1

4(m+ 1)2
+

1

5(m+ 1)4

]
≤ 1

m+ 1
· 145

256
≤ 1

m+ 1
· 1√

3
.

For x ∈ [0, 1] and m ≥ 4, the estimates in [18, Proof of Lemma 2] yield

sinπx

(m+ 1) sin π
m+1x

≤ exp

(
−π

2((m+ 1)2 − 1)

6(m+ 1)2
x2

)
≤ exp

(
−4π2x2

25

)
and thus, for m ≥ β ≥ 4, the remaining estimate∥∥∥dβm∥∥∥2

L2(T)
=

2

(m+ 1)2β

∫ 1/2

0

∣∣∣∣sin(π(m+ 1)t)

sin(πt)

∣∣∣∣2β dt
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=
2

m+ 1

 1

(m+ 1)2β

∫ 1

0

(
sin(πx)

sin( π
m+1x)

)2β

dx+

∫ m+1
2

1

∣∣∣∣∣ sin(πx)

sin( π
m+1x)

∣∣∣∣∣
2β

dx


≤ 2

m+ 1

[∫ ∞
0

exp

(
−8βπ2x2

25

)
dx+

∫ ∞
1

(
1

2x

)2β

dx

]

=
1

m+ 1

[
5

2
√

2π

1√
β

+
21−2β

2β − 1

]
≤ 1

m+ 1
· 1√

β
.

In order to prove the fourth assertion, note |t|T ≤ |t− t′|T + |t′|T ≤ 2 max{|t− t′|T , |t′|T}
and hence, i) and ii) yield∣∣dm(t′)

∣∣ ∣∣dm(t′ − t)
∣∣ ≤ 1

2(m+ 1)
min

{
1

|t′ − t|T
,

1

|t′|T

}
≤ 1

(m+ 1) |t|T

and ‖dmdm(· − t)‖L∞(T) ≤ ((m+ 1) |t|T)−1. Moreover, direct computation gives∣∣∣〈dm, dm(· − t)〉L2(T)

∣∣∣ =
|dm(t)|
m+ 1

≤ 1

m+ 1
· 1

2
· 1

(m+ 1) |t|T
.

and with z = e2πit and Parseval’s identity also∣∣∣〈d2
m, d

2
m(· − t)

〉
L2(T)

∣∣∣ =
1

(m+ 1)4

∫
T

(
sinπ(m+ 1)t′

sinπt′
· sinπ(m+ 1)(t′ − t)

sinπ(t′ − t)

)2

dt′

=

∣∣∣∣∣
m∑

k=−m
(m+ 1− |k|)2zk

∣∣∣∣∣
=

∣∣(z + 1)z
(
zm+1 − z−m−1

)
+ 4(m+ 1)z(1− z)

∣∣
(m+ 1)4 |z − 1|3

≤ 1

m+ 1
· 1

2
· 1

(m+ 1)2 |t|2T
.

Finally, let t be the coordinate with |t|T = |t|Td , then the Cauchy–Schwarz inequality, iii), and
the above yield (noting that e−2πimt′d2

m(t′) ≥ 0 and omitting the second last line if β = 1)∣∣∣∣〈dβm, dβm(· − t)
〉
L2(Td)

∣∣∣∣ ≤ ∣∣∣∣∫
Td
dβm(t′)dβm(t′ − t) dt′

∣∣∣∣
≤
∥∥∥dβm∥∥∥2(d−1)

L2(T)

∣∣∣∣∫
T
dβm(t′)dβm(t′ − t) dt′

∣∣∣∣
≤
∥∥∥dβm∥∥∥2(d−1)

L2(T)
‖dmdm(· − t)‖β−2

L∞(T)

∣∣∣〈d2
m, d

2
m(· − t)

〉
L2(T)

∣∣∣
≤ 1

2(m+ 1)dβ(d−1)/2
· 1

(m+ 1)β |t|βT
.

Lemma 3.2 (Lagrange-like basis with decay, cf. [15, v2, Lem. 3]). Let β, d,M, n ∈ N, β be
even, Ω = {t1, . . . , tM} ⊂ [0, 1)d be a clustered node configuration and n ≥ 2β2λ. Then for
each tj ∈ Ω with tj ∈ Λl for some l = l(j), there exists an Ij ∈ P(n), such that
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i) Ij(tk) = δjk for all tk ∈ Λl,

ii) |Ij(t)| ≤ ββλβ+λ−1

(2N |t−tj |Td )β
C for all t 6= tj, and

iii)
∣∣∣〈Ik, Ij〉L2(Td)

∣∣∣ ≤ λdβd/2

Nd λ2λ−2C2

1, tk ∈ Λl,
√
β

2

(
λβ

N |tj−tk|Td

)β
, otherwise.

Proof. We define the functions Ij as product of a Lagrange polynomial Gj within the cluster
and a fast decaying function Hj . Let j ∈ {1, . . . ,M} be fixed and define the j-th Lagrange
polynomial within its cluster Λl, l = l(j), as follows. If |Λl| = 1, we simply set Gj ≡ 1.
Otherwise, let

Q :=
⌊n
λ

⌋
≥ n− λ+ 1

λ
≥ N

2λ
(3.1)

denote the ’blow-up-factor’ and for tk ∈ Λl\{tj} let `(k) be the index of the vector component
that realizes the distance |tj − tk|Td . We immediately have |Qtj −Qtk|Td = Q |tj − tk|Td 6= 0
and thus

Gj(t) :=
∏

tk∈Λl\{tj}

e2πiQ(t)`(k) − e2πiQ(tk)`(k)

e
2πiQ(tj)`(k) − e2πiQ(tk)`(k)

fulfills Gj(tk) = δj,k and by inequality (2.2)

‖Gj‖L∞(Td) ≤
∏

tk∈Λl\{tj}

1

2Q
∣∣∣(tj)`(k) − (tk)`(k)

∣∣∣
T

≤ λλ−1C. (3.2)

We proceed by setting

P :=

⌊
n

λβ

⌋
, P + 1 ≥ n− λβ + 1

λβ
+ 1 ≥ N

λβ
,

and Hj(t) := dβP (t− tj). Lemma 3.1 yields Hj(tj) = 1,

|Hj(t)| ≤
(

1

2(P + 1) |t− tj |Td

)β
≤
(

λβ

2N |t− tj |Td

)β
, t 6= tj ,∣∣∣〈Hk, Hj〉L2(Td)

∣∣∣ ≤ ∥∥∥dβP∥∥∥2

L2(Td)
≤ 1

(P + 1)dβd/2
≤ λdβd/2

Nd
, tk ∈ Λl,∣∣∣〈Hk, Hj〉L2(Td)

∣∣∣ =

∣∣∣∣〈dβP , dβP (· − (tj − tk)
〉
L2(Td)

∣∣∣∣ ≤ λdβ(d+1)/2(λβ)β

2Nd(N |tj − tk|Td)β
, tk /∈ Λl.

Finally, we define Ij(t) := Gj(t)Hj(t). This yields Ij ∈ P(n) since Gj ∈ P(Q(λ − 1)),
Hj ∈ P(Pβ), and

Pβ + (λ− 1)Q ≤ n

λ
+ (λ− 1)

n

λ
= n.

Moreover, this function has the desired property Ij(tk) = δjk for all tk ∈ Λl and the two
remaining inequalities follow by |Ij(t)| ≤ ‖Gj‖L∞(Td) |Hj(t)| and by using e−πiβP (t−tj)Hj(t) ≥

0, also
∣∣∣〈Ik, Ij〉L2(Td)

∣∣∣ ≤ ‖Gj‖2L∞(Td)

∣∣∣〈Hk, Hj〉L2(Td)

∣∣∣.
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Remark 3.3. Following the calculation in the second version of [15, p. 36], we can improve
(3.2) to

‖Gj‖L∞(Td) ≤
(

1− π2

3λ2

) 1−λ
2
(
N

λ
/
⌊n
λ

⌋)λ−1(λ
π

)λ−1

C ≤ 2.4

(
C(n)λ

π

)λ−1

C

with C(n)→ 1 for n→∞ and where the first two bracketed terms are due to (2.3) and (3.1),
respectively.

4 A lower bound on the smallest singular value

In this chapter we work out the multivariate extension of Theorem 1 in the second version
of [15]. Additionally, we do an improvement on the cluster separation condition, especially
make the cluster separation independent on the number of nodes M . Furthermore, we provide
an improved estimate on the smallest singular value σmin(A) only depending on the biggest
cluster size λ and not on the number of all nodes M .

Theorem 4.1. Let β, d,N,M ∈ N, β ≥ d+ 1 even, Ω = {t1, . . . , tM} ⊂ [0, 1)d be a clustered
node configuration and N > 2β2λ. Moreover, assume the cluster separation

ρ ≥ λβ
(
β1/22d(2d − 1)λλζ(β − d+ 1)C

) 1
β
. (4.1)

Then the smallest singular value of the Vandermonde matrix A ∈ CM×Nd
from Definition

2.1 is bounded by

σmin(A) ≥
(

1.5 · βd/4λλ+d/2−1/2
)−1 Nd/2

C
.

Proof. We apply the robust duality from Lemma 2.2, with v ∈ CM , ‖v‖2 = 1, such that
σmin(A) = ‖A∗v‖2, and

f :=

M∑
k=1

vkIk,

where the Lagrange-like basis functions Ik are given by Lemma 3.2. The interpolation errors
εj = f(tj)− vj fulfill ε = Kv, where K ∈ CM×M has the entries

Kj,k :=

{
0, j = k,

Ik(tj), j 6= k.

We proceed by ‖ε‖2 ≤ ‖K‖2 ≤
∥∥∥K̃∥∥∥

2
, where the second inequality follows from monotonicity

of the norm [10, p. 520] (or [13, Lem. A.2]) and Lemma 3.2 i) and ii) with

K̃j,k :=

{
0, tj ∈ Λl(k),
ββλβ+λ−1

(2N |tk−tj |Td )β
C, otherwise.

Since K̃ ∈ RM×M is symmetric, we bound the spectral norm by the maximum norm and
apply the packing argument from Definition 2.3 ii) and Remark 2.4 ii) to get

‖ε‖2 ≤ max
j=1,...,M

M∑
k=1
k 6=j

K̃j,k ≤ λ2d(2d − 1)

bN/2ρc∑
m=1

md−1 max
t∈Jm

ββλβ+λ−1

(2N |t|Td)β
C

9



≤ 2d−β(2d − 1)λβ+λββCζ(β − d+ 1)ρ−β.

Condition (4.1) and β ≥ 2 imply ‖ε‖2 ≤
1

4
√

2
. To bound the L2-norm of f , let K̂ :=(

|〈Ik, Ij〉|
)
j,k=1,...,M

∈ RM×M . The triangle inequality, symmetry of K̂, Lemma 3.2 iii), and

the packing argument from Definition 2.3 ii) and Remark 2.4 ii) yield

‖f‖2L2(Td) =
M∑
j=1

M∑
k=1

vkvj 〈Ik, Ij〉L2(Td) ≤ max
‖w‖2=1

w∗K̂w ≤
∥∥∥K̂∥∥∥

∞
≤ max

j

M∑
k=1

∣∣∣〈Ik, Ij〉L2(Td)

∣∣∣
≤ λdβd/2

Nd
λ2λ−2C2

λ+ λ2d(2d − 1)

bN/2ρc∑
m=1

md−1 max
t∈Jm

√
β

2

(λβ)β

(N |t|Td)β


≤ λdβd/2

Nd
λ2λ−1C2

(
1 + λβββ+1/22d−1(2d − 1)ζ(β − d+ 1)ρ−β

)
.

Condition (4.1) implies

‖f‖L2(Td) ≤
√

3

2

(
λ
√
β

N

)d/2
λλ−1/2C

and Lemma 2.2 finally the result.

For d = 1, Remark 2.4 iii) applied to the cluster complexity yields:

Corollary 4.2. Under the assumptions of Theorem 4.1 with d = 1 and β = 2, we have

σmin(A) ≥ 1

1.8(2e)λ−1
·
√
Nτλ−1.

Example 4.3 (Specific choices of β). Specific choices of β in Theorem 4.1 yield the following:

i) By choosing β = d + 1 or β = d + 2 for d being odd or even, respectively, and some
additional cosmetics, the condition

ρ ≥ 6dλ
(
λλC

) 1
d+1

implies our best estimate

σmin(A) ≥
(

3dd/4λλ+d/2−1/2
)−1 Nd/2

C
.

ii) By choosing β = 2
⌈

1
2 log

(
2d(2d − 1)λλζ(2)C

)⌉
and noting that 2β

√
β ≤ 1.2 for β even

and logC
√
C = e, our weakest condition

ρ ≥ 3.3λ (2.5 + 1.4d+ λ log λ+ log C) ,

implies

σmin(A) ≥
(

1.5 · (2.5 + 1.4d+ λ log λ+ log C)d/4 λλ+d/2−1/2
)−1 Nd/2

C
.
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Example 4.4 (Well separated nodes). For λ = 1, we have C = 1 and the nodes are well
separated. For ρ ≥ 6d, Example 4.3 i) yields

σmin(A) ≥ Nd/2

3dd/4
.

Note that Theorem 4.1 always assumes ρ ≥ β ≥ d + 1. This compares to [12], where ρ ≥
3 + 2 log d already suffices for σmin(A) > 0. Using Theorem 4.1 directly for d = 1 and β = 2,
then ρ ≥ 4.4 implies

σmin(A) ≥
√
N

1.8
.

This compares to [2, 19], which provide under the same condition on ρ, σmin(A) ≥
√
N ·√

1− 1/ρ ≥
√
N/1.14.

Example 4.5 (Pair clusters). For λ = 2, we have C = 1/τ and at most pairs of nodes form
clusters. Example 4.3 i) with

ρ ≥ 12d

(
4

τ

) 1
d+1

implies

σmin(A) ≥ τNd/2

12 · 2d/2−1/2 · dd/4
.

Example 4.6 (Pair clusters, comparison). Let d = 1 and λ = 2. We apply Theorem 4.1

with β = 2, β = 2
⌈

1
2 log

(
π2

3 λ
λC
)⌉

and β = 2λ, respectively. These results are compared to

[15, Thm. 1] (with minor corrections and where we simplified slightly bn/λc ≈ n/λ), to [13,
Thm. 4.9] (under the additional assumption that all nodes inside the clusters have the same
separation), and to [8, Cor. 4.2] (with a minor improvement for τ ≤ 1 and in estimating [8,
Eq. (8)]). These comparisons are also presented in section 6.1 numerically.

Ref. Thm. 4.1 [15] [13] [8]

ρ ≥ 17.3√
τ

34.9 + 6.6 |log τ | 29
4√τ

42.5 4√M
4√τ 25(log(

⌊
M
4

⌋
) + 1) 3

σmin(A) ≥ τ
√
N

7.2
τ
√
N

6 4
√

5.3+|log τ |
τ
√
N

8.6
τ
√
N

4.5
√
M

τ
√
N

3.5
τ
√
N

1.7

Example 4.7. (Comparison with [15]) Let d = 1 and β = 2λ, then N > 2λ3 and ρ ≥
4.4λ5/2C

1
2λ imply

σmin(A) ≥
(

1.8 · Cλ−1
0 · λλ+1/4

)−1
√
N

C
,

where we set C0 = 1 for the moment. This can be compared to [15, Thm. 1], where after

minor corrections N > 2λ2 and ρ ≥ 10λ5/2(MC)
1
2λ , imply

σmin(A) ≥
(

1.5 · Cλ−1
0 ·

√
Mλλ

)−1
√
N

C
.

According to Remark 3.3, C0 ∈
(
π−1, 1

]
depending on λ and n. In total, we have a stronger

condition on N but our condition on ρ is always weaker and our estimate on σmin(A) is
sharper if M > 2. This comparison is also presented in Figure 6.2.
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Example 4.8 (All nodes cluster). Let d = 1 and λ = M . If N > 8M , then Corollary 4.2
implies

σmin(A) ≥ 1

1.8(2e)M−1
·
√
NτM−1.

This compares to [3], where the restriction of the nodes to an interval of length 1/(2M2) and
N ≥ 4M3 imply

σmin(A) ≥ 1

2MM2M−1
·
√
NτM−1,

but, note that the definition of a clustered node configuration in [3] is in principle more flexible
than ours.

5 Upper bounds and beyond distances

In this section, we show that the obtained lower bounds are sharp for d = 1 and for λ = 2,
respectively. Moreover, we show for d > 1 and nodes in generic position (e.g. not all nodes
on a line for d = 2), that the cluster complexity C is not the optimal quantity to understand
the situation here. If we assume a normalized minimal separation τ between nodes, then the
estimate in Theorem 4.1 is sub-optimal with respect to the order in τ we can derive from
the cluster complexity. For this, we give an example with one cluster of three nodes in the
bivariate case, d = 2.

Example 5.1 (Matching bounds for d = 1). In the second version of [15, Prop. 3] an upper
bound on σmin(A) is given for a clustered node configuration that consists of at least one
cluster of λ equispaced, τ separated nodes. After further simplifications, we can derive

min
Ω
σmin(A) ≤ (πλ)1/4πλ−1

√
Nτλ−1(1 + τC(λ)

√
N), C(λ) := 2π

λ∑
l=0

(
λ− 1
l

)
lλ

λ!
.

Together with Remark 3.3 and Corollary 4.2 this assures that for sufficiently large N ∈ N,
small τ and λ ≥ 2, there exist constants c1 ≤ c2 such that

√
N (c1τ)λ−1 ≤ min

Ω
σmin(A) ≤

√
N (c2τ)λ−1 ,

where the minimum is taken over all clustered node configurations Ω with at least one cluster
of λ nodes with normalized minimal separation τ .

This was also expected in [3, Rem. 3.5]. In particular note that the lower bound in Remark
2.4 iii) implies that the term λλ in Theorem 4.1 cannot be avoided.

Example 5.2 (Matching bounds for λ = 2). Let d ∈ N, λ ≥ 2, and τ ≤ 1 be such that
|t1 − t2|Td = τ/N , then the Cauchy interlacing theorem for eigenvalues ([10, Thm. 4.3.28])
and the binomial formula yield

σmin(A)2 ≤ Nd (1− |dn (t1 − t2)|) ≤ Nd

(
1−

(
1− π2τ2

6

)d)

≤ Ndπ
2τ2

6

d−1∑
k=0

(
1− π2τ2

6

)k
≤ π2τ2dNd

6
.
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Together with Example 4.5, there exists constants c1(d) ≤ c2(d) such that

c1(d)Nd/2τ ≤ min
Ω
σmin(A) ≤ c2(d)Nd/2τ,

where the minimum is taken over all clustered node configurations Ω with at least one cluster
of λ = 2 nodes with normalized minimal separation τ .

Example 5.3 (Triple cluster). Let d = 2, N ∈ N, and Ω = {t1, t2, t3} ⊂ [0, 1)2 with

t1 =

(
0
0

)
, t2 =

ν

N

(
a1

a2

)
, t3 =

ν

N

(
b1
b2

)
, ν ∈

(
0,

1

2

]
, a2

1+a2
2 = b21+b22 = 1, a1b1+a2b2 ≤ 0.

and hence, the normalized minimal separation of Ω is ν/
√

2 ≤ τ ≤ ν. Then the smallest
singular value of the corresponding Vandermonde matrix A fulfills

σmin(A) =

{
Θ(τ2), antipodal nodes, a1b1 + a2b2 = −1,

Θ(τ), otherwise,

and this can be seen as follows: Define the real matrix

M :=

1 u v
u 1 w
v w 1

 :=
(

e−πim(tj−tk)dm(tj − tk)
)
j,k=1,2,3

,

note that σmin(A)2 = σmin(AA∗) = σmin(M) =
∥∥M−1

∥∥−1

2
, and use the explicit formula

∥∥M−1
∥∥

2
=

1

|u2 + v2 + w2 − 2uvw − 1|

∥∥∥∥∥∥
w2 − 1 u− vw v − uw
u− vw v2 − 1 w − uv
v − uw w − uv u2 − 1

∥∥∥∥∥∥
2

. (5.1)

The univariate Taylor expansion

e−πinν/Ndn

( ν
N

)
= 1− αnν2 + γnν

4 +O
(
ν6
)
, αn, γn 6= 0,

and a2
1 + a2

2 = 1 = b21 + b22 yield

u = 1− αnν2 + (α2
na

2
1a

2
2 + γn(a4

1 + a4
2))ν4 +O

(
ν6
)

and similar expressions for the other quantities. By direct computation, we see that the entries
in the matrix on the right hand side of (5.1) are all O

(
ν2
)

and for example the diagonal entry
u2 − 1 is Θ(ν2) independent of a and b. Hence, the norm of that matrix is Θ(ν2). Similarly,
the denominator of (5.1) can be computed to be

u2 + v2 + w2 − 2uvw − 1 =

{
O
(
ν6
)
, a1b1 + a2b2 = −1,

Θ(ν4), otherwise.

Finally, this yields

σmin(A) =

{
O
(
ν2
)
, a1b1 + a2b2 = −1,

Θ(ν), otherwise,

and together with Theorem 4.1 the assertion.
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6 Numerics

In this section we do four different experiments. Two of them are to compare our results with
recent results from the literature (d = 1) and two of them underline our results from section
5. All computations were carried out using MATLAB R2017b.

6.1 Pair clusters

In order to compare our results (see Example 4.6) with the ones from the second version of
[15, Thm. 2], [8] and [13], we set d = 1, N = 215 + 1 ([13] requires odd N without further
considerations), and take M = 4 and M = 20 nodes, respectively. The node configuration
consists of uniformly placed clusters (at l/N , l = 1, . . . ,M/2) that include two nodes each.
The first cluster realizes the minimal separation τ , which is picked logarithmically uniformly
at random from [10−12, 1], i.e. t1 = 0 and t2 = τ/N . The further clusters have nodes t2l = l/N
and t2l+1 = (l + δ)/N for l = 1, . . . , (M − 1)/2, where δ ∈ [τ, 2τ ] (parameter c = 2 in [13,
Thm. 4.7]) is picked uniformly randomly. Afterwards, we compute σmin(A), where A is the
Vandermonde matrix defined in (2.1) corresponding to the node configuration. For each M
we pick 50 instances of τ and the results are presented in Figure 6.1. This clustered node

Figure 6.1: Comparison of different results for the case of pair clusters as in Example 4.6.

configuration fulfills ρ ≥ 2N
M − 1 independently of τ . Theorem 4.1 and the second version

of [15, Thm. 1] make restrictions to τ through the condition on ρ. Therefore, choosing β

logarithmically as in Example 4.3 ii) requires τ ≥ e−
35.9−2N/M

6.6 , which is below 10−200 for both
M = 4 and M = 20. The second version of [15] and our result with β = 4 requires respectively

τ ≥ 434M

ρ4
≈

{
1.9 · 10−10, M = 4,

5.9 · 10−7, M = 20,
τ ≥ 294

ρ4
≈

{
9.8 · 10−12, M = 4,

6.1 · 10−9, M = 20.

6.2 Bigger clusters

In this numerical example, we confirm our results in the univariate case, d = 1, for bigger
clusters of size λ = 5 and compare them with the results from the second version of [15].
The polynomial degree is set to N = 215. We build up clustered node configurations with
L = 2 (M = 10) and L = 10 (M = 50) clusters placed equispaced at l

L for l = 0, . . . , L − 1.
At each cluster position the cluster nodes start to lie equispaced with separation τ

N , where

14



τ ∈ [10−4, 1/4] (the right hand interval bound is due to cluster lying in an interval of length
1/N) is picked logarithmically uniformly at random. Afterwards the smallest singular value
σmin(A) is computed. This procedure is repeated 100 times for the respective choice of L
and the results are presented in Figure 6.2. We use the statements from Example 4.7 with
C0 = (1− π2

3λ2
)−1/2N/λ bn/λc−1. Since d = 1, the worst case cluster complexity is estimated

by (2.4) to C ≤ τ−4/4.

Figure 6.2: Node configurations with bigger clusters. Lower bounds on σmin(A). Comparison
with [15, v2, Thm. 1] as presented in Example 4.7 with estimate from Remark
3.3.

6.3 Pair clusters, bivariate

We present a numerical experiment in order to confirm our results for the higher dimensional
case and set d = 2. Randomized clustered node configurations of L = 2, L = 20 and
L = 40 clusters with 2 nodes each are constructed for 100 different minimal separations τ ,
respectively. Then the smallest singular values of the corresponding Vandermonde matrices
σmin(A) are computed and the upper bound from Example 5.2 and the lower bound from
Example 4.5 are shown. The results are presented in Figure 6.3. The node configurations
are built as follows. The minimal separation τ is picked logarithmically uniformly at random
in [10−3, 1]. We set N = 103 so that the condition on ρ in Example 4.5 together with the
left interval bound for τ make ρ ≥ ρmin (value shown in the figure) necessary. Two clusters
realize the cluster separation ρmin and for the remaining clusters, we pick a position in [0, 1]2

uniformly at random. The positions are fixed for the respective choice of L and do not change
for different τ . Each cluster is constructed randomly by setting one node to (0, 0) and one to
either (a, 1) or (1, a) for some a ∈ [0, 1]. Then we scale the clusters by τ and move them to
their respective cluster positions.

6.4 One triple cluster, bivariate

Here we present a numerical experiment for Example 5.3. We set N = 100, d = 2 and build
the triple cluster consisting of the nodes t1 = (0, 0)T , t2 = (−

√
1− a2ν/N, aν/N)T and t3 =

(ν/N, 0)T (see Figure 6.4, left), where τ = ν
√

1− a2 ∈ [10−6, 1/2] is picked logarithmically
uniformly at random. Then we compute the smallest singular value of the Vandermonde
matrix σmin(A). This is repeated 100 times for a = 0.1 and a = 0 each. The results are
presented in Figure 6.4 (right). We see the asymptotic behavior with respect to τ calculated

15



Figure 6.3: Upper and lower bounds on σmin(A) for bivariate pair clusters as in Examples 4.5
and 5.2.

in Example 5.3. Furthermore, for nodes not being antipodal, we observe that the asymptotic
starts when τ becomes smaller than the displacement parameter a.

Figure 6.4: Triple cluster, almost antipodal nodes, cf. Example 5.3. Left: sketch of node
positions. Right: numerical results.
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