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Another Hilbert inequality and critically separated interpolation nodes
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Abstract: Estimates on the condition number of Vandermonde matrices have implications on several algorithms ranging
from polynomial interpolation to sparse super resolution in fluorescence microscopy. Classically, the situation is studied for
monomials on real intervals, the complex unit disk, and the complex unit circle. Except for roots of unity and well separated
nodes on the unit circle, the condition number grows strongly with increasing polynomial degree. Here, we show that the
condition number of the Vandermonde matrix for a particular instance of critically separated nodes on the complex unit circle
grows logarithmically with the polynomial degree. The proof is based on a variant of Hilbert’s inequality with remainder
term.
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1 Introduction and known results

For m,n ∈ N, zj ∈ C, j = 1, . . . ,m, we define the Vandermonde matrix

A := A(n, {zj}) := (zk−1j )m,nj,k=1 ∈ Cm×n

A classical result [2, Thm. 4.1] shows

condA ≥
√

2

n+ 1
·
(
1 +
√
2
)n−1

for m = n and arbitrary real nodes zj ∈ [−1, 1], where we note in passing that we consider the basis of monomials only
and other bases like Chebyshev polynomials overcome this ill-conditioning behaviour. Similar results are available for Van-
dermonde matrices with nodes in the complex unit disk, cf. [1, Thm. 5]. The situation changes dramatically, if we consider
nodes on the complex unit circle T := {z ∈ C : |z| = 1}. Here the primal example is of course the Fourier matrix
F := (e2πikj/n)j,k=0,...,n ∈ Cn×n which is unitary up to normalization and thus has condition number 1. More general,
nodes on the unit circle zj = e2πitj , tj ∈ [0, 1), are called well separated if

nq > 1

where q := minj 6=`minr∈Z |tj − t` + r|. An approach via extremal functions [5] or via a generalized Hilbert inequality [1]
then yields

condA ≤
√
nq + 1

nq − 1
.

Obviously, this bound detoriates for nq → 1 although full row rank m is still guaranteed via a Vandermonde determinant
argument since m ≤ 1/q ≤ n. Moreover, for nq < 1 and n large enough, there can be placed m > n equispaced nodes on
the unit cirlce and thus the matrix A cannot have rank m.

2 Specific setup and main result

In the following we discuss one particular critically separated case nq = 1 and show that unlike for the Fourier matrix, the
condition number grows with n.

Fig. 1: Nodes with some larger gap around 1
2

and 0(= 1 mod 1)

Let n ∈ N, q = 1
2n+1 , m = 2n, and nodes be given by

xj =

{
jq, j = 1, . . . , n,(
j + 1

2

)
q, j = n+ 1, . . . , 2n,
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see Figure 1 for an illustration. Now, we define the Vandermonde matrix

An :=
(
e2πikxj

)
j=1,...,2n;k=−n,...,n ∈ C2n×2n+1

and the symmetric Toeplitz matrix

Tn :=
1

2n+ 1

 1

cos
(
π(j−`)
2n+1

)

j,`=1,...,n

∈ Rn×n.

The following two lemmata discuss the close relationship of these matrices and approximate eigenvectors of the matrix Tn.
Lemma 2.1 With the above notation, the extremal singular values of An and the maximal eigenvalue of Tn are related via

σ2
minAn = 1− λmaxTn, σ2

maxAn = 1 + λmaxTn.

P r o o f. We have

Kn :=
1

2n+ 1
AnA

∗
n =

1

2n+ 1

(
sin(2n+ 1)π(xj − x`)

sinπ(xj − x`)

)
j,`

=

(
In T ′n
T ′n In

)
∈ R2n×2n, (T ′n)j,` := (−1)j(Tn)j,`(−1)`

and since theAn has full rank 2n, the matrixKn is symmetric positive definite. A theorem of Jordan-Wielandt [4, Thm. 7.3.3]
yields the result.

Lemma 2.2 There exist constants C1, C2 > 0 such that for sufficiently large n ∈ N, the vectors `, v, w ∈ Rn,

vj :=
1√

sin 2πj
2n+1

, `j := log (min {j, n+ 1− j}) , wj :=
1

2
`j · (vj + vn+1−j), j = 1, . . . , n,

fulfil

w>w ≥ C1n log
3 n and w>(In − Tn)w ≤ C2n log n.

P r o o f. Please note that the non-numbered constant C may differ at each appearance. Only considering the first half of
the vector and estimating sinx ≤ x, we directly compute

w>w ≥ (2n+ 1)

bn/2c∑
j=1

log2 j

2πj
≥ C1n log

3 n.

Subsequently, we bound w>(In − Tn)w from above, this involves several preparatory steps: The definition of the vector v
is motivated by the continuous analogue

1

π

∫ π
2

0

1

cos(x− y)
· 1√

sin 2x
dx =

1

π

∫ 1

−1

1

1 + ts
· 1√

1− t2
dt =

1√
1− s2

=
1√

sin 2y
,

where the first equality uses t = tanx and s = tan y and the second equality follows from t = 1
2

(
z + z−1

)
and Cauchy’s

integral formula. For fixed y ∈ (0, π2 ), the integrand Sy : (0, π2 )→ R,

Sy(x) =
1

cos(x− y)
· 1√

sin 2x
,

is convex and with h = π/(2n+ 1) and j = 1, . . . , n, we obtain

1

π

∫ π/2

0

Sjh(x)dx︸ ︷︷ ︸
vj

>
1

π

∫ π/2

h/2

Sjh(x)dx >
1

2n+ 1

n∑
i=1

Sjh

(
i

2n+ 1

)
︸ ︷︷ ︸

(Tnv)j

>
1

π

∫ π/2−h/2

h

Sjh(x)dx

where the last inequality follows by leaving out the minimal summand and moving the remaining ones inwards. Together with∫ h

0

Sjh(x)dx =

∫ h

0

1

cos(x− jh)
· 1√

sin 2x
dx ≤ max

x∈[0,h]

1

cos(jh− x)

∫ h

0

1√
4x/π

dx ≤ C
√
n

j
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and an analogous estimate for the integral on the interval [π/2− h/2, π/2], this yields

(Tnv)j < vj ≤ (Tnv)j + C
√
nmax

{
1

j
,

1

n+ 1− j

}
for the symmetrized vector v ∈ Rn, vj = 1

2 (vj + vn+1−j). Together with sinx ≥ 2x/π, L := diag(`), and using the
symmetry of the vectors w = Lv and v, we get

w>L(v − Tnv) ≤ C
√
n

dn/2e∑
j=1

`2jvj
1

j
≤ Cn

dn/2e∑
j=1

log2 j

j3/2
≤ Cn.

Secondly, there exists κ ∈ (0, 1) such that

1

2n+ 1

n∑
i=1

(`j − `i)vi
cos π(j−i)2n+1

≤

{
C
√

n
j , κn/2 < j ≤ dn/2e,

0, j ≤ κn/2.
(1)

To see this, we start by noticing the symmetry of ` and v as well as cosx ≥ cos(π/2− x), 0 ≤ x ≤ π/4, such that

(`j − `i)vi
cos π(j−i)2n+1

<
(`j − `i)vi

cos π(j−(n+1−i))
2n+1

<
(`j − `i)vi
sin π(j+i)

2n+1

,
(`j − `n+1−i)vn+1−i

cos π(j−(n+1−i))
2n+1

=
(`j − `i)vi

cos π(j−(n+1−i))
2n+1

<
(`j − `i)vi
sin π(j+i)

2n+1

.

for i, j < n/2. We get for j ≤ dn/2e the bound

1

2n+ 1

j∑
i=1

(`j − `i)vi
sin π(j+i)

2n+1

≤ C
j∑
i=1

log(j/i)vi
j + i

≤ C 1

j

j∑
i=1

log(j/i)√
i/n

≤ C
√
n

j

∫ 1

0

log(1/x)√
x

dx ≤ C
√
n

j
.

Moreover, the subsequent summands are all negative and can be estimated by

1

2n+ 1

dn/2e∑
i=j+1

(`j − `i)vi
sin π(j+i)

2n+1

≤ 1

2n+ 1

dn/2e∑
i=dn/4e+1

(log j − log i)vi

sin π(j+i)
2n+1

≤ 1

2n+ 1

dn/2e∑
i=dn/4e+1

(log j − logdn/4e)vi
sin π(j+i)

2n+1

≤ C log(4j/n)
1

2n+ 1

dn/2e∑
i=dn/4e+1

vi

sin π(j+i)
2n+1

≤ C log(4j/n)

∫ 1/2

1/4

dx
√
x
(
j
n + x

)
≤ C log(4j/n)

√
n

j
,

where the first inequality either adds positive or neglects negative terms, respectively. Combining both estimates leads to

1

2n+ 1

n∑
i=1

(`j − `i)vi
cos π(j−i)2n+1

≤ 2

2n+ 1

dn/2e∑
i=1

(`j − `i)vi
sin π(j+i)

2n+1

≤ C (1 + log(4j/n))

√
n

j

which is non-positive for log(4j/n) ≤ −1 and thus shows the inequality (1). Together with sinx ≥ 2x/π and again the
symmetry of w and v we get

w>(LTnv − Tnw) =
n∑
j=1

wj (Tn(`jv − w))j

≤ C

n

dn/2e∑
j=1

wj

n∑
i=1

(`j − `i)vi
cos π(j−i)2n+1

≤ C
dn/2e∑

j=dκn/2e

√
n log j√
j

√
n

j

≤ Cn log n

Altogether, the second result follows from w>(In − Tn)w = w>L(v − Tnv) + w>(LTnv − Tnw).
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Theorem 2.3 There exist a constant C0 > 0 such that for sufficiently large n ∈ N and with the above notation, we have

1− 1

C2
0 log

2 n
≤ ‖Tn‖ < 1.

and in particular

condAn ≥ C0 log n.

P r o o f. The upper bound follows from Lemma 2.1 and symmetry of Tn by 0 < σ2
minAn = 1−λmaxTn = 1−‖Tn‖. The

lower bound follows from Lemma 2.2 by

‖Tn‖ ≥
w>Tnw

w>w
≥ 1− w>(In − Tn)w

w>w
.

Remark 2.4 The vector v in Lemma 2.2 would result in a weaker final result by

v>v ≥ Cn log n, v> (I − Tn) v ≤ Cn, and condAn ≥ C
√
log n.

Finally, we would like to mention the following similar result for the Hilbert matrix. We have

1− π4

2 log2 n
+O

(
log log n

log3 n

)
≤ ‖Hn‖ < 1, Hn :=

1

π

(
1

j + `

)
j,`=1,...,n

∈ Rn×n,

where the upper bound might be seen as a variant of the famous Hilbert inequality and the lower bound can be found in
[3]. While we have the very same rate for the second term, our constant certainly is an artefact of our proof technique.
Unfortunately, we were not able to relate Tn and Hn directly. The numerical test in Figure 2 suggests a “true” constant
C = 4/π2 in Theorem 2.3.
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Fig. 2: Condition number of the Vandermonde
matrix An with respect to n (blue stars), numeri-
cal value of

√
1− w>w/w>Tw for the test vec-

tor w (red stars), and 1+ 4
π2 log(n) (yellow line).

Note that the norm of the matrix Tn can be com-
puted explicitly for moderate n and via Matlab’s
routine svds, where we used a fast matrix vec-
tor multiplication via fast Fourier transforms, for
large n.
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