

31: Algebraic and Metric Properties of Random Geometric Graphs and Complexes

Matthias Reitzner and Tim Römer Universität Osnabrück

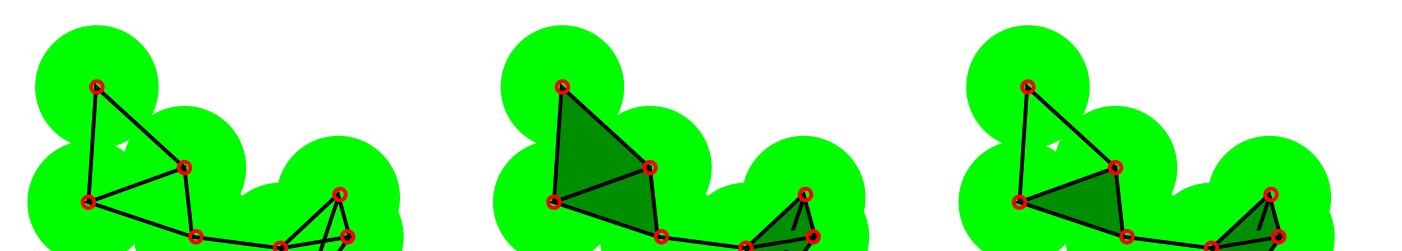
Applicant identifiers: RE 3181/5-1, RO 2504/5-1 Requested positions: Doctoral students: 1 at the University of Osnabrück

Possible connections to projects: 4, 7, 10, 13, 28, 32, 34

Random Geometric Systems

Gilbert Graph and Random Simplicial Complexes

- Poisson point process η_t : in \mathbb{R}^d with intensity measure $\Theta(A) = t\lambda_d(A) > 0$
- Gilbert graph on η_t: vertices F₀ = η_t edges F₁ = {{v₀, v₁} ⊂ η_t: B(v₀, δ_{t/2}) ∩ B(v₁, δ_{t/2}) ≠ ∅}
 Vietoris-Rips complex V(η_t, δ_t): clique complex of the Gilbert graph



k-simplices $\mathcal{F}_k = \left\{ \{v_0, \dots, v_k\} \subset \eta_t : B(v_i, \frac{\delta_t}{2}) \cap B(v_j, \frac{\delta_t}{2}) \neq \emptyset \right\}$

• Čech complex $C(\eta_t, \delta_t)$: nerve of the Boolean model k-simplices $\mathcal{F}_k = \left\{ \{v_0, \dots, v_k\} \subset \eta_t : \bigcap_0^k B(v_i, \frac{\delta_t}{2}) \neq \emptyset \right\}$

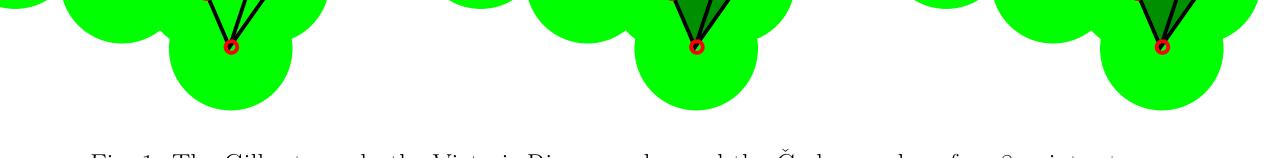


Fig. 1: The Gilbert graph, the Vietoris-Rips complex and the Čech complex of an 8 point set.

Geometry of Random Complexes

- face numbers, the f-vector $(f_0, f_1...)$ contains the number $f_i = |\mathcal{F}_i|$ of *i*-dimensional faces in a compact set:
- -expectation $\mathbb{E}\boldsymbol{f}$;
- -covariance matrix $\Sigma(\boldsymbol{f})$;
- -LLN, uni- and multivariate CLT's, limit theorems;
- concentration inequalities.
- **percolation**, there exists a critical value v_{perc} :
- -for $t\delta_t < v_{\text{perc}}$ only finite components occur;
- -for $t\delta_t > v_{\text{perc}}$ there is a unique infinite component.
- component counts:
- the expected number of components with at most k vertices; - CLT's and concentration inequalities.

Aims

- **volume power functionals**: non-central limit theorems and concentration inequalities;
- Euler characteristic: concentration inequalities;
- **h-vector**: $\boldsymbol{h} = (h_0, h_1 \dots)$ with $h_k = \sum_{i=0}^k (-1)^{k-i} {d-i \choose d-k} f_{i-1}$; $h_{d-1} = (-1)^{d-1} \chi$; the probability that \boldsymbol{h} is nonnegative, symmetric, or unimodal;
- Cohen-Macaulay property: the probability that random complexes are Cohen-Macaulay; implications on the *h*-vector; yields many useful algebraic tools to investigate simplicial complexes and their properties;
- algebraic Betti numbers (generalize topological Betti numbers): expectation and variance of algebraic Betti numbers; proving deviations or concentration inequalities for Betti numbers of $\mathcal{V}(\eta_t, \delta_t)$ and $\mathcal{C}(\eta_t, \delta_t)$.

Working program

Algebraic Properties of Random Complexes

- (reduced) Euler characteristic $\chi = \sum (-1)^i f_i$:
- -first two moments $\mathbb{E}\chi$, $\mathbb{V}\chi$, e.g., by discrete Morse theory;
- -deviation inequalities using Malliavin calculus.
- (topological) Betti numbers $\beta_k = \dim_K H_k(\Delta; K)$ for a field K and complex Δ : - in the sparse regime: $\mathbb{E}\beta_k$ and $\mathbb{V}\beta_k$, PLT and CLT;
- in the thermodynamic regime: $\mathbb{E}\beta_k$ and $\mathbb{V}\beta_k$, SLN and CLT;
- in the dense regime: order of $\mathbb{E}\beta_k$, threshold for $\beta_k = 0$.

Metric Properties of Random Complexes

- length power functional $L^{(\tau)} = \frac{1}{2} \sum_{\mathcal{F}_1} \|x_1 x_2\|^{\tau}$:
- -first two moments $\mathbb{E}L^{(\tau)}$, $\mathbb{V}L^{(\tau)}$, applied algebra, Mecke formula;
- -(multivariate) CLT's, deviation inequalities using Stein's method, Malliavin calculus.
- volume power functional $V_k^{(\tau)} = \frac{1}{k!} \sum_{\mathcal{F}_k} \lambda_k [x_1, \dots, x_k]^{\tau}$:

proving limit theorems and concentration results for V_k^(τ);
 determining the top dimension of V(η_t, δ_t) and C(η_t, δ_t) via the *f*-vector;
 investigating the Euler characteristic by utilizing the knowledge on the top dimension;
 h-vector depends on *f*-vector and dimension: investigating its asymptotic behaviour;
 properties of links: determining the asymptotic distribution of their Betti numbers;
 the Cohen-Macaulay property follows from properties of the Betti numbers of links;
 comparism to results in the spherical and hyperbolic setting.

Project-related Work of the Applicants

[Akinwande-Reitzner '20; Reitzner-Schulte-Thäle '17; Reitzner-Römer-Westenholz '23+] limit behaviour of volume power functionals

[Bachmann-Reitzner '18; Reitzner '13] concentration inequalities for Poisson functionals, applied to the f-vector and general subgraph counts

[Brun-Römer'08; Bruns-Koch-Römer'08; Bruns-Römer'07;Le-Römer'13] study of objects of discrete mathematics with methods from combinatorial algebra

[Bruns-Conca-Römer '11] vanishing results for Betti numbers of Veronese algebras
[Edelsbrunner-Nikitenko-Reitzner'17] discrete Morse theory for Delaunay mosaics

-first two moments $\mathbb{E}V_k^{(\tau)}$, $\mathbb{V}V_k^{(\tau)}$, discrete geometry, Mecke formula; -(multivariate) CLT's using Stein's method, Malliavin calculus.

[Grygierek-Juhnke-K.-Reitzner-Römer-Röndigs '19] complicated topological structure of $\mathcal{V}(\eta_t, \delta_t)$ and $\mathcal{C}(\eta_t, \delta_t)$

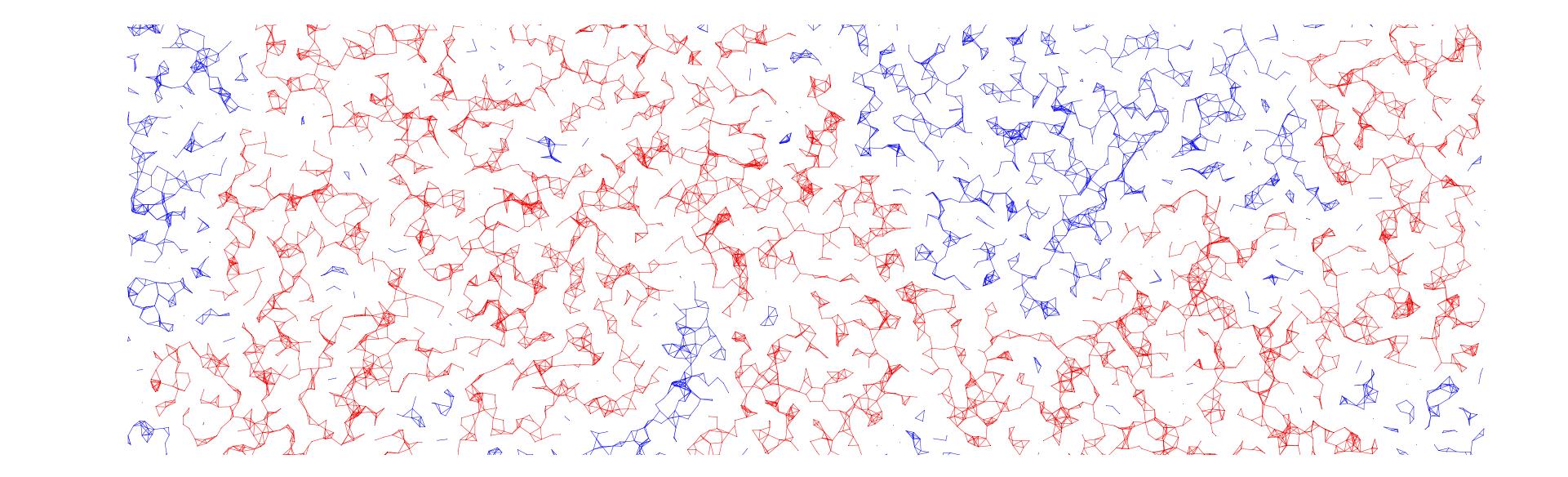


Fig. 2: A computer simulation of Percolation in the Gilbert graph in d = 2; infinite component in red; finite components in blue.